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� Introduction

Quite often� a group appears as a set of symmetries of some object � a set
equipped with geometrical� algebraic or combinatorial data� The theory of
quantum groups enlarges the notion of symmetry� a quantum group often�
describes �generalized symmetries� of an object� In the case of a linear
orthogonal� symplectic� quantum group� this object is a linear orthogonal�
symplectic� quantum space � an algebra with certain quadratic relations� A
study of these underlying objects� the quantum spaces� helps to understand
the structure of the quantum groups� In these lectures I will illustrate the
role of the quantum spaces on two examples� non�perturbative e�ects in the
theory of Yang�Baxter operators and real forms of quantum groups�

To talk about non�perturbative e�ects� one should explain �rst� what
means �perturbative� or �deformational�� This is the subject of the sub�
section ���� The initial data for a quantum deformation of a Lie algebra L
is conveniently encoded in terms of another Lie algebra DL�� the Drinfeld
double of L� The Lie algebra DL� has an invariant scalar product and I have
included a subsection ��� on the structure of Lie algebras with an invariant
scalar product�

For a semi�simple Lie algebra L� the most important deformations are
those which are called quasitriangular� They are classi�ed by Belavin�Drin�
feld triples� The subsection ��� contains some information about the combi�
natorics of the Belavin�Drinfeld triples�

In section �� after a geometrical interpretation of the quantum deforma�
tions of Lie groups� we introduce an algebra of functions on a quantum group�
a de�nition of GL�type quantum groups and quantum spaces is given in sub�
section ���� In subsection ��� we explain how to use a di�erential calculus on
a GL�type quantum space for calculating the Poincar	e series�

Subsection ��� is devoted to ��dimensional quantum spaces� We exhibit
an unexpected appearance of Yang�Baxter operators and give an example of
a non�perturbative Yang�Baxter operator� We prove the Poincar	e�Birkho��
Witt theorem for the quantum space de�ned by this Yang�Baxter operator�

Subsection ��� deals with e�ects speci�c to quantum groups at roots of
unity� We introduce a terminology of formatted matrix algebras over local
graded rings� which is useful in the study of non semi�simple algebras� We
describe the matrix structure of the reduced quantum enveloping algebra and
the reduced function algebra for slq���
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Subsection ��� contains a summary of the theory of quasi�triangular Hopf
algebras� In subsection ��� we classify Yang�Baxter matrices� which can have
non�zero entries only at places where the pair of lower indices is a permutation
of the pair of the upper ones� Subsection ��� gives a construction of the Yang�
Baxter matrices for orthogonal and symplectic groups from the Yang�Baxter
matrices for GL�

In section � we describe a method of classi�cation of real forms of quantum
groups� The method is based on the study of the corresponding quantum
spaces�

Throughout the text� a sum over repeated indices is assumed� If X �
fX i

jg and Y � fY i
j g are two operators� the indices are summed as XY �ij �

X i
kY

k
j in their product�

� Lie bialgebras

A Hopf algebra H is a collection of data fH�m��� S� �g� where H is a vector
space over a ground �eld k� m � H�H � H a multiplication� � � H � H�H
a comultiplication� � � H � k is a counit and S � H � H an antipode� For a
precise formulation of various relations between these maps see e�g� ���� Let
me just remind that for a Hopf algebra H one knows how to build tensor
products of representations and it is given universally by �� the counit gives
rise to a trivial representation� the antipode is needed to build contragredient
representations�

The classical examples of Hopf algebras are group algebras k�G� of �nite
groups G and universal enveloping algebras UL� of Lie algebras L�

��� Deformation of the coproduct

Let L be a Lie algebra over C and U its universal enveloping algebra� Denote
by fXig a basis of L� The classical coproduct �� � U � U � U is given on
generators Xi by ��Xi � Xi � � � � � Xi� The map �� is a coassociative
homomorphism coassociativity means ���I��� � I������ for the maps
U � U�U �U � here I is the identity map�� In this subsection we shall study
deformations of the coproduct ��� A deformation of �� is� by de�nition� a
coassociative homomorphism � � U � U � U �

�a� � ��a� � ���a� � ����a� � � � � � ������
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The right hand side is a formal power series in the parameter �� which is
called a deformation parameter� The coe�cients �ka� are elements of U�U �

Our task is to understand which deformations are �essential�� in the sense
that they cannot be removed by some rede�nition of generators� Here is the
answer modulo ���

Theorem �
 Any deformation of ��� after a change of generators� takes a
form in the �rst order in ��

�Xi � ��Xi � ��jki Xj �Xk� ������

The antisymmetric tensor �jki �jki � ��kji � is a ��cocycle with values in ��L�
� � Z�L���L�� explicitly�

N
�ab�
�ij� � �sij�

ab
s � ������

where Nab
ij � �ai��

�b
j and �ab� means antisymmetrization in indices a and b�

t�ab� � tab � tba for a tensor tab� Here �kij are the structure constants of the
Lie algebra L� �Xi�Xj � � �kijXk�

Proof� Assume that � is a deformation of the classical coproduct ��� On
the generators Xi we have

�Xi� � ��Xi� � ��i � � � � ������

with some �i � U � U � where dots denote higher powers in ��
The coassociativity� in order ��� is equivalent to a following equation on

�i in U��
�i � � � �� � I��i � � � �i � I�����i � ������

I is the identity operator� The algebra U�� is the enveloping algebra of
L�L�L� Let Xi� Yi and Zi be the generators of the �rst� second and third
copies of L� respectively� Then the equation ������ can be rewritten as

�iX�Y � � �iX � Y�Z� � �iY�Z� � �iX�Y � Z� � ����
�

The statement that � is a homomorphism reads� in terms of �i� as

�Xi � Yi� �j�� �Xj � Yj� �i� � �kij�k ������
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the algebra U � U is the enveloping algebra of L � L� Xi and Yi are the
generators of the �rst and second copies of L��

Let � � U �U � U �U be the  ip� �x� y� � y� x� Decompose �i into
symmetric and antisymmetric parts with respect to ��

�i � si � ai ������

with �si� � si and �ai� � �ai�
Proposition �
 If �i satis�es ������ and ������ then both si and ai satisfy
������ and �������

Proof� We have ��Xi� � ��Xi� � ���i � � � �� where ��i � ��i� � si � ai�
If � is a coproduct then �� � � �� is a coproduct as well� so ��i satis�es

�������
�Xi � Yi� �

�
j� � �Xj � Yj� �

�
i� � �kij�

�
k � ������

and �������
��i � � � �� � I���i � � � ��i � I�����

�
i � �����!�

Take the sum and di�erence of ������ and �����!� respectively� ������ and
������� to �nish the proof� �

In particular� each part symmetric or antisymmetric� of �i alone de�nes
a coproduct in order ���

Clearly� a rede�nition of generators can change only the symmetric part
of �i� We start by analyzing this case the case of symmetric �i��

Proposition �
 Assume that � is symmetric in order ��� ��i � �i� Then
the �� terms can be removed by a rede�nition of generators�

Proof� U is the algebra of polynomials in the generators Xi� It is �ltered by
the degree of polynomials� FkU are polynomials of degree� k� The associated
graded term FkU	Fk��U is isomorphic to SkL� the symmetric power of L�
Any element u � U has a well�de�ned �highest symbol�� if u � FkU n Fk��U
n is the set�theoretic complement� then its highest symbol is the image of
u in SkL� Denote by xi the basis of commuting variables corresponding to
generators Xi� The highest symbol is a homogeneous polynomial in a set of
commuting variables xi�

The algebra U �U is the enveloping algebra of L�L� the highest symbols
are homogeneous polynomials in two sets of variables� xi and yi�






Let fi be the symbol of �i� Then fi is a polynomial in two sets of variables�
fi � fix� y�� The symmetry condition implies that fix� y� � fiy� x��

The coassociativity implies� in order ��� an equation

fx� y� z� � fx� y� � fx� y � z� � fy� z� �������

for each fi�

Lemma �
 Let fx� y� be a homogeneous polynomial� symmetric with re�
spect to the  ip x 	 y� The polynomial f satis�es ������� if and only if
there exists a homogeneous polynomial gx� a polynomial in only one set of
variables xi� such that

fx� y� � gx� y�� gx�� gy� � �������

Proof� It is straightforward to see that fx� y� � gx � y� � gx� � gy�
satis�es ��������

Assume now that f satis�es �������� Let M be a total degree of f � If
M � ! then f � c is a constant and it is enough to take g � �c� Assume
that M 
 !�

Applying �
�xi

to ������� and evaluating at x � !� we obtain an equation
after replacing y� x and z� y�

�i�f jx�y � �i�f j��x�y � �i�f j��x � �������

where �i� are the partial derivatives in the �rst set of variables�
Applying �

�zi
to ������� and evaluating at z � !� we obtain an equation

�i�f jx�y � �i�f jx�y�� � �i�f jy�� � �������

where �i� are the partial derivatives in the second set of variables�
Since f is homogeneous of degreeM � we have xi�i��yi�

i
��f � Mf � which�

together with ������� and �������� gives

Mf � xi�
i
�f j��x�y � yi�

i
�f jx�y�� � xi�

i
�f j��x � yi�

i
�f jy�� � �������

The symmetry of f � fx� y� � fy� x� implies that ��
i f jx�y � ��

i f jy�x� There�
fore we can rewrite ������� in the form ������� with gx� � �

M
xi��

i f j��x� The
proof of the Lemma � is �nished� �
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We proved that for each i there exists gix� such that

fix� y� � gix� y�� gix�� giy� � �����
�

Let g�i X� be an element whose highest symbol is gix�� The combination
g�i X � Y � � g�i X� � g�i Y � satis�es the equation ����
�� Therefore� an
element �iX�Y � � g�i X � Y � � g�i X� � g�i Y �� which has the �ltration
degree smaller than the degree of �iX�Y �� satis�es ����
� as well� and we
can apply the Lemma � again�

Repeating this process a needed number of times� we shall �nally build a
set of elements �i � U such that

�iX�Y � � �iX � Y �� �iX�� �iY � � �������

Let X�
i � Xi � ��iX�� It is straightforward to see that in the order ��

the coproduct for the generators X�
i is classical� �X�

i � � X�
i � � � ��X�

i �
It is left to show that one can choose �i in such a way that the generators

X�
i satisfy the same Lie algebraic relations as the original generator Xi� It

will be so if and only if �Xi� �j�� �Xj� �i�� �kij�k � ! for all i and j�
Since � is a homomorphism� it follows immediately that elements �ij �

�Xi� �j�� �Xj� �i�� �kij�k satisfy relations

�ijX � Y � � �ijX� � �ijY � � �������

Equation ������� implies that the functions �ij are linear� �ijX� � �kijXk�
We shall need a short digression into the general theory of universal en�

veloping algebras see� e�g� �����
An element u � U can be uniquely decomposed into a sum

u � symb�u� � symb�u� � � � �� symbdu� � �������

where d is the �ltration degree of u and symbAu� � ci����iAXi� � � �XiA for some
completely symmetric tensor ci����iA� Elements of the form ci����iAXi� � � �XiA

with a completely symmetric ci����iA form a subspace UA 
 U and the above
decomposition of u implies that U is a direct sum of UA� U � ��

A��UA� Each
UA is a L�module that is� commutators of generators Xi with symbAu� are
again in UA�� in other words�

symbA�Xi� u�� � �Xi� symbAu�� � �����!�

�



The module UA is isomorphic to the symmetric power SAL�
Let �j �

P
symbA�j� be a decomposition of the form ������� of the

element �j � We have seen that �ij is in U� for each i and j� It follows then
from �����!� that �ij � �Xi� symb��j�� � �Xj� symb��i�� � �kijsymb��k��
Therefore� �Xi� "�j� � �Xj� "�i� � �kij"�k � ! for all i and j� where "�i � �i �
symb��i�� Therefore� the elements "X�

i � X�
i � �"�iX� satisfy the same Lie

algebraic relations as the original generators Xi� � "Xi� "Xj� � �kij "Xk�
Moreover� since for an element g� � U�� the combination g�X � Y � �

g�X�� g�Y � vanishes� the elements "�i � �i� symb��i� still verify �����
��
Therefore� as before� the coproduct for the elements "Xi is classical�

Thus� the elements "Xi provide the needed rede�nition of the generators
Xi� The proof of the Proposition � is �nished� �

Using� if necessary� the rede�nition of the Proposition �� we get rid of the
symmetric part of �i� Assume therefore that �i is antisymmetric� Again� let
fi be the highest symbol of �i� The symmetry condition is now fix� y� �
�fiy� x�� As before� the coassociativity implies� in order ��� the equation
������� for each i�

Proposition �
 Let fx� y� be a homogeneous polynomial� antisymmetric
with respect to the  ip x 	 y� Assume that the polynomial f satis�es
�������� Then

fx� y� � jkxjyk �������

for some antisymmetric tensor � jk � �kj�
Proof� The derivatives of f satisfy equations ������� and �������� There is
one more equation which we didn#t need for the Lemma �� It is obtained by
applying �

�yi
to ������� and evaluating at y � ! we change variables� z � y�

�i�f jx�y � �i�f jx�� � �i�f jx�y � �i�f j��y � �������

The antisymmetry of f � fx� y� � �fy� x�� implies ��
i f jx�y � ���

i f jy�x�
Substituting �i�f jx�y and �i�f jx�y from ������� and ������� into ������� and
using the antisymmetry� we �nd

�i�f j��x�y � �i�f j��x � �i�f j��y � �������

�



Thus� �i�f j��x is a linear function� Substituting ������� into �������� we �nd
�i�f j��x�y � �i�f j��y� Thus� �i�f jx�y is a linear function which depends on the
second set of variables only� In other words� �i�f jx�y � ij� yj�

Similarly� �i�f jx�y is a linear function which depends on the �rst set of
variables only� �i�f jx�y � ij� xj�

The antisymmetry� ��
i f jx�y � ���

i f jy�x� implies that ij� � �ij� � Let
ij � ij� � Then

�i�f jx�y � ijyj and �i�f jx�y � �ijxj � �������

Since the derivatives of f are homogeneous of degree �� the function f
itself is homogeneous of degree �� So �f � xi�i� � yi�

i
��f � Substituting

expressions �������� we �nd

�f � xi
ijyj � yi

ijxj � �ij�xiyj � �������

where the square brackets mean antisymmetrization� �ij� � ij � ji and the
assertion of the Proposition � follows� �

After the Propositions �� � and � it is only left to check a condition that
� is a homomorphism in the �rst order in �� A straightforward calculation
gives the cocycle condition ������� The proof of the Theorem � is �nished�
�

Remark� It is not necessary to assume that the ground �eld is C � The
Theorem � holds for an arbitrary �eld of characteristic ! and it is not true
if the characteristic is di�erent from !��

Repeating the proof of the Proposition � consecutively in powers of �� one
obtains a version of the Milnor�Moore theorem for its general formulation
see� e� g� �����

Corollary �
 A formal i�e� given by a formal power series in �� cocommuta�
tive deformation of the coproduct on a universal enveloping algebra is always
trivial� that is� it can be removed by a formal rede�nition of generators�

In the rest of this subsection we explain what happens in the next order
in �� in the ���terms�

It turns out that the consistency in the �� terms imposes new conditions
on �jki �
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Assume that we can extend the deformation ������ to ���terms�

�Xi � ��Xi � ��jki Xj �Xk � ���i � �����
�

and � is coassociative up to ��� Coassociativity implies

�i������id��i��
abc
i Xa�Xb�Xc � ���i�id�����i��

cba
i Xa�Xb�Xc �

�������
with a notation� �abci � �jci �

ab
j for a tensor �jki �

To cancel the �abci �terms� one has in order to get trilinear in X expres�
sions� to choose �i in the form

�i � Aabc
i XaXb �Xc �Babc

i Xc �XaXb � �������

with tensors Aabc
i and Babc

i symmetric in indices fa� bg� In the next formulas�
the lower index is omitted�

Coassociativity ������� gives

�Bbca �Aabc� � �abc � �bca � �������

Exchange b and c in ������� and subtract from �������� taking into account
the symmetry of Babc in fa� bg�

�Aacb �Aabc� � �bca � Jabc � �����!�

where
Jabc � �abc � �bca � �cab � �������

The tensor Jabc is totally antisymmetric� Under the exchange a 	 b� eqn�
�����!� becomes

�Abca �Abac� � �acb � J bac � �������

Under the exchange a	 c� eqn� �����!� becomes

�Acab �Acba� � �bac � J cba � �������

The combination �����!� � ������� � ������� gives due to the symmetry of
Aabc in fa� bg�

! � �Jabc � �������

This is the Jacobi identity �����!� for ��

��



Now from 
 permutations of fa� b� cg one gets only two equations

�Aacb �Aabc� � �bca � �������

�Abca �Abac� � �acb � �����
�

The tensor Aabc� being already symmetric in the �rst two indices� can have

two types of symmetry� corresponding to Young diagrams and

�

The totally symmetric part the diagram � of A cannot be
de�ned by �������������
�� it is arbitrary� The part� corresponding to the

diagram satis�es

Aabc �Abca �Acab � ! � �������

Together� eqs� �������� �����
� and ������� can be easily solved and we
conclude taking into account the totally symmetric part� that the general
solution for A is

Aabc �
�



�cba � �cab� � �abc �������

with totally symmetric �abc�
$From ������� it follows then that

Bbca �
�



�abc � �acb� � �abc � �������

In particular� Aabc � Babc�
The totally symmetric part �abc can be removed by a rede�nition solve

for g the equation ������� with fx� y� � �abcxaxbyc � xcyayb���
We conclude that the coassociative extension of � to the ���terms is

possible only if the Jacobi identity for � is satis�ed�

�abci � cycle in a� b� c� � ! � �����!�

This extension has the form

�Xi � ��Xi � ��jki Xj �Xk �
��



�cbai � �cabi �XaXb �Xc �Xc �XaXb� �

�������

��



However� in general� � does not preserve the original commutation relations
�Xi�Xj � � �kijXk� the multiplication structure of U has also to be deformed
in the order ���

Exercise� The map � preserves the following relations ���

�Xi�Xj � � �kijXk �
��

��
�sai �

tb
j �

c
stX	aXbXc
 � �������

with round brackets inX	aXbXc
 denoting the symmetrization�X	i�Xi�Xi�
 �P
Xi����Xi����Xi���� � the sum is over all permutations � � S��

Given the multiplication ������� and the comultiplication �������� one
needs to know the counit and the antipode to complete the Hopf algebra
structure�

Exercise� The counit � stays undeformed�

�Xi� � ! mod �� � �������

for the antipode mod �� one has

SXi� � �Xi �
�

�
�Ma

i Xa �
�

�
���bli M

a
l �

c
abXc � �������

where Mv
a � ��vca �kck � �kjk �

v
ja � �sta �

v
st� Note that S stays linear in gener�

ators��

It is known today that in higher orders in � no further restriction on �
appears� in other words� if �jki satis�es the Jacobi and cocycle conditions�
there exist� as formal power series in �� the multiplication� which begins as
�������� and the comultiplication� which begins as ������� and the counit
and antipode�� Moreover� there exists such deformation that each term in
the formal power series for the multiplication� comultiplication and the an�
tipode� is expressible in terms of the tensors �jki and �kij only�

�
�
� Discrete groups

The situation with discrete groups is di�erent� It is an easy exercise to
analyze the formal deformations of the coproduct for the group algebras of

��



discrete groups� In contrast to the case of universal enveloping algebras� the
result is trivial�

Let G be a discrete group� U � C �G� its group algebra over complex
numbers�

Theorem �� U does not admit a nontrivial deformation of the standard
coproduct�

Proof� Assume that there is a �rst order deformation of a coproduct�

�g � g � g � �
X
k�l

Ck�l
g k � l � �������

where �� � !�

i� The coassociativity condition in the �rst order in � gives

X
k�l

Ck�l
g k � l � g � k � k � l � g � k � l � k � l� l� � ! � �����
�

Collecting terms a� b� c with �xed a and c� a �� g and c �� g� one �nds

Ca�c
g a � Ca�c

g c � �������

This holds for all a and c di�erent from g� Therefore� only Cg�g
g � Ck�g

g � Cg�k
g

and Ck�k
g might di�er from !�

Now the condition �����
� becomes

X
k ��g

fCg�k
g g � k � g � g � k � k� � Ck�g

g k � k � g � g � k � g�

� Ck�k
g k � k � g � g � k � k�g � ! � �������

This implies that there is a set of constants Bk
g for k �� g� s� t�

Cg�k
g � Ck�g

g � Bk
g � C

k�k
g � �Bk

g � k �� g � �������

This solves the coassociativity condition� Thus� we have

�g � � � �cg�g � g � �
X
k ��g

Bk
g g � k � k � g � k � k� � �����!�

��



ii� The condition that � is a homomorphism implies in the �rst order in
���

Bg��k
h �Bkh��

g � Bk
gh and cgh � cg � ch � �������

Let
g� � � � �cg�g � �

X
k ��g

Bk
gk � �������

A direct calculation shows that ������� is exactly the condition saying that
g � g� is an algebra homomorphism� g�h� � gh���

Again a straightforward calculation shows that

�g� � g� � g� � �������

Therefore� given a deformation of the standard coproduct� we can explicitly
construct an isomorphism with the original bialgebra� The proof is �nished�
�

In the same way as the Corollary 
 followed from the Proposition �� we
obtain the information about the formal deformations in this case�

Corollary �
 At formal level� all deformations of the coproduct for the
group algebras of discrete groups are trivial�

��� Lie algebras with an invariant scalar product

We have seen in the previous subsection that the essential role in the theory
of deformations of the coproduct on universal enveloping algebras is played
by a tensor �jki � All the conditions on the tensor � are expressed in terms of
the Lie algebra itself� without any reference to the deformation theory� The
relevant classical notion is a �Lie bialgebra��

De�nition
 A Lie bialgebra is a Lie algebra L equipped with a map � � L �
��L� �Xi � �jki Xj � Xk� where the tensor � antisymmetric in the upper
indices� satis�es the Jacobi identity and belongs to Z�L���L��

Both � and � satisfy the Jacobi identity� The condition � � Z�� written
explicitly as ������� is symmetric in �	 �� So the notion of the Lie bialgebra
is self�dual like the notion of the Hopf algebra�� In other words� if L is a
Lie bialgebra then there is a Lie bialgebra structure on the dual space L��

��



the roles of � and � being interchanged� There is an object which explicitly
realizes this symmetry between � and �� It turns out Exercise� verify it�
that all the data for a Lie bialgebra can be conveniently expressed as the
Jacobi identity for a larger Lie algebra with generators Xi and X i� satisfying

�Xi�Xj � � �kijXk � for generators of L � ������

�X i�Xj � � �ijkX
k � for generators of L� � ������

�Xi�X
j � � ��jikXk � �jki Xk � ������

This Lie algebra is called a Drinfeld double of the Lie bialgebra L and denoted
DL� As a vector space� DL is isomorphic to L � L��
De�nition
 A scalar product hx� yi on a Lie algebra L i�e� a nondegenerate
symmetric pairing L�L � k� is called invariant if h�x� y�� zi � hx� �y� z�i for
all x� y� z � L�

Example� The Killing form on a semi�simple Lie algebra is invariant�

The natural pairing between L and L�� given by

hX i�Xji � ! � hXi�Xji � ! � hXi�X
ji � �ji ������

is an invariant scalar product on DL� Moreover� the commutation relations
between Xi and Xj can be reconstructed with relations ������ and ������
being given� from the demand of invariance of the natural pairing� Indeed�
let �Xi�X

j� � Aj
ikX

k �Bjk
i Xk� Then

�Aj
ia � h�Xj �Xi��Xai � hXj � �Xi�Xa�i � hXj ��biaXbi � �jia

and similarly for Bjk
i �

De�nition
 A set of data fg�L��L�g where g is a Lie algebra with an
invariant scalar product� L� and L� are isotropic Lie subalgebras of dimension

� dim L
� and g � L� � L� is called a Manin triple�

A Lie bialgebra L de�nes a Manin triple fDL�L�L�g� Conversely� a
Manin triple fg�L��L�g de�nes a Lie bialgebra L�� $From this perspective�

�




the study of Lie bialgebras splits into two parts� Lie algebras with an in�
variant scalar product� their maximal isotropic subalgebras� I will shortly
comment on the �rst part�

Denote by fg� �g a Lie algebra g with an invariant scalar product �
�x� y� � hx� yi�� The pair fg� �g is called indecomposable if it cannot
be represented as a direct sum fg�� ��g � fg�� ��g�

Example of fg� �g� Let M be a Lie algebra with generators Xi� Let
g �M nM� the semi�direct product with respect to the coadjoint action��
Then the scalar product

hX i�Xji � ! � hXi�Xji � �ij � hXi�X
ji � �ji � ������

where �Xi�Xj� � �ij is an arbitrary bilinear symmetric form� is an invariant
scalar product�

Generalization of this example� Let fW��g be a Lie algebra with an
invariant scalar product� Suppose that a Lie algebra g acts on W by deriva�
tions� Ta�x� y� � �Tax� y� � �x� Tay�� where T is the action� T � g �W � W �
a�w � Taw�� suppose that the operators Ta� a � g� are antisymmetric with
respect to the scalar product on W � �Tax� y� � ��x� Tay� for all x� y � W
and a � g�

Exercise� Show that the map � � ��W � g
� de�ned by ha� �x� y�i �

�Tax� y�� where h�� �i is the natural pairing between g and g�� is a ��cocycle�
� � Z�W� g�� g� is considered here as a trivial W �module��

As a ��cocycle� � de�nes a central extension of W by g�� In other words�
the bracket

�x� y� � �x� y�W � �x� y� ����
�

where �x� y�W is the commutator of x and y in the Lie algebra W � de�nes a
Lie algebra structure on W � g�� Denote this Lie algebra by "W �

Exercise� For a � g x � W and f � g� let

"Tax� f� � Tax� ad�af � ������

where ad� is the coadjoint action� Show that the formula ������ de�nes an
action of g on "W �

We have therefore a Lie algebra structure on the space A � g�W � g��
a semi�direct product g n "W with respect to the action �������
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De�ne a scalar product �A on A� the pairings between the generators of
g and g

� are given by ������� the restriction of �A on W is �� all the other
pairings are !�

Exercise� The scalar product �A is invariant�

The Lie algebra A with the scalar product �A is called the double exten�
sion of fW��g by S and the action of S on W ��

Theorem ����
 If a Lie algebra with an invariant scalar product is not
simple or ��dimensional then it is either decomposable or a double extension�
Moreover� one can always choose g to be simple or ��dimensional�

This theorem gives a way to construct higher�dimensional Lie algebras
with an invariant scalar product from lower�dimensional ones� However� this
is not a classi�cation�

Example of a nontrivial double extension� g � son�� W is the n�di�
mensional fundamental representation of g� consider W as an abelian Lie
algebra� The cocycle� giving a bracket on W �g� is given by the natural map
� �W �W � g�� and A � g n V � g���

Exercises�

In dimension � there is only one non abelian Lie algebra� choose a basis
fx� yg in such a way that the commutation relation is �x� y� � y� Denote this
Lie algebra by L��

�� Show that any bialgebra structure on L� can be written after possible
rede�nitions� in one of two forms�

�x � ! � �y � x � y ������

or
�x � x � y � �y � ! � ������

�� Show that for the bialgebra structure ������ the double is gl�� for
������ the double is a semi�direct product C n N of a one�dimensional Lie
algebra with a generator W � and the three�dimensional Heisenberg algebra
N with generators X�Y�Z and relations �X�Y � � Z� �Z�X� � �Z� Y � � !��
the action ofW onN is given by �W�X� � �X� �W�Y � � ��Y and �W�Z� � !�
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�� Show that operations

�x � x� � � � � x � �y � y � � � e�x � y �����!�

and

�x � x� �� ��y��� � �� x � �y � y � � � �� ��y�� y �������

provide Hopf algebra structures on corresponding completions of UL��

�� Show that the Hopf algebra structure� de�ned by �����!� respectively�
�������� is a quantization of the Lie bialgebra structure ������ respectively�
�������� Note that the terms of order � in the deformation parameter �
are not antisymmetric� but� as you remember� the symmetric part can be
removed by rede�nitions�

�� Let L � sl� � sl�� Show that any invariant scalar product on L has a
form  � c� where  is the Killing form on sl� and c is a constant�


� Let c � ��� Show that the diagonal g� � sl� is isotropic� A subalgebra
g� with a basis fe�� !�� !� e��� h��h�g is a complementary isotropic subal�
gebra fh� e�� e�g is a standard basis in sl�� �h� e�� � ��e�� �e�� e�� � h��
Thus� this Manin triple provides a Lie bialgebra structure on sl��

�� Classify all Manin triples on L�

�� Classify ��� �� and ��dimensional Lie algebras with an invariant scalar
product�

��� Belavin�Drinfeld triples

Let L be a simple Lie algebra over C � In this case� every ��cocycle is a
coboundary see any textbook on Lie algebras� e�g�� �
�� so one can solve the
cocycle condition for �� � � �� or� explicitly� �jki Xj �Xk � ���Xi� ��� with
� � �abXa �Xb an element of the wedge square of L that is� �ab � ��ba��

Now the Jacobi identity for � can be rewritten as a non�linear equation
for the element ��

Notation� for an element A � U � U � A �
P

� x� � y� let A�� �
P

� x� �
y� � �� A�� �

P
� x� � � � y� and A�� �

P
� � � x� � y�� the elements A���

A�� and A�� are from U � U � U �

��



Exercise� Show that the Jacobi identity for � can be rewritten in terms of �
as

������ ���������� ���������� �����Xi�������Xi�������Xi� � ! ������

for all i�

The element ����� ���� � ����� ���� � ����� ���� belongs to the third wedge
power of L� i�e�� it has a form AijkXi �Xj �Xk with totally antisymmetric
Aijk� The space of invariant elements in ��L� for the simple L� is known see�
e�g�� �
�� to be one�dimensional� it is generated by an element � � �ijkXi �
Xj�Xk� where �ijk � �kabB

aiBbj� Bij � hXi�Xji for the Killing form h�� �i and
Bij is inverse to Bij� BijBjk � �ik �

i
k is the Kronecker delta�� We conclude

that the Jacobi identity for � � �� is satis�ed i� ����� ���������� ���������� ����
is proportional to ��

Let C � BijXi �Xj �

Exercise� Show that �C��� C��� � �C��� C��� � �C��� C��� is proportional to ��

Therefore we can �nd a combination r � �� const � C for which

�r��� r��� � �r��� r��� � �r��� r��� � ! � ������

Note that we still have �jki Xj �Xk � ��Xi� r� since B commutes with ��Xi

for all i� The equation ������ is called the classical Yang�Baxter equation
cYBe�� We explained that for a simple Lie algebra L the problem of �nding
the Lie bialgebra structures on L reduces to cYBe for r which satis�es� r�r�

is proportional to C� r�r� � xC with x � C r� is the  ip of r� r� � rijXj�Xi

for r� � rijXi �Xj�� If x �� ! one can set x � � by rescaling r�
The Yang�Baxter equation which reduces to the cYBe in the classical

limit� is
R��R��R�� � R��R��R�� � ������

Solutions of the cYBe for which x �� ! are the most interesting � their quan�
tizations �nd lots of applications in statistical models� knot theory� represen�
tation theory etc�

Exercise� In the situation of the exercise 
 from the previous subsection�
show that the corresponding coproduct on sl� arises from an r�matrix� r �
�
�h� h� e� � e�� Verify the cYBe for this r�

�!



We shall now explain how the solutions of cYBe with r�r� � C are classi�
�ed in terms of so called Belavin�Drinfeld triples� A procedure of quantizing
these solutions is known today ��� ��� It is however interesting to enumerate
the Belavin�Drinfeld triples� which is a combinatorial question� in the end of
this subsection we shall discuss and partly answer it�

Classi�cation of solutions


Fix a Cartan subalgebra h� Let R be the set of roots� R � R� �R�� and
� the set of simple positive roots�

De�nition
 A Belavin�Drinfeld triple ������ � � consists of the following
data� �� and �� are subsets in � and � � �� � �� is a one�to�one mapping
which satis�es properties�

i� � preserves the scalar product� that is� h� ��� � ��i � h�� �i for all �
and � from ���

ii� � is �nilpotent�� It means the following� Assume that � ��� which is
an element from �� is still in ��� Then � ��� is de�ned� If again � ��� � ��

then there is � ���� Nilpotency means that the sequence must terminate�
that is� for some k � N� an element � k�� is not any more in �� for any
� � ���

Given a Belavin�Drinfeld triple� consider a system of equations for a tensor
r� � h� h�

r� � r�� � t� �

� ��� id � id� ��r�� � ! for all � � �� �
������

Here t� is the �Cartan part� of t� for a basis H� of h let Bo
�� � hH��H�i�

then t� � Bo ��H�H� where Bo �� is the inverse to B�� � Bo��B�	 � ��	 �
The system ������ is compatible ����
Recall that g � h�L�	R g�� where �h� x� � �h�x for x � g�� dimg� � ��
Let Ai be a Lie subalgebra generated by e� with � � �i� i � �� �� Then A

is the direct sum of those g� for which the expansion of � in terms of simple
roots contains simple roots from �i only�

The map � � �� � �� extends to an isomorphism � � A� � A� denoted
also by � �� by the formula e� � e
	�
� It is an isomorphism because the only
relations in Ai are Serre relations which depend on the scalar product h�� �i
only and � respects the scalar product�

��



For each � � R choose e� in such a way that
i� he��� e�i � ��
ii� e
	�
 � � e�� whenever � e�� is de�ned e� � A���
De�ne a partial order� � � � for �� � � R means that there exists a

natural k such that � k�� � ��

Theorem �	�
 Let

r � r� �
X
�	R�

e�� � e� �
X

���	R����

e�� � e� � e� � e��� � ������

where r� is a solution of �������
Then

i� the tensor r satis�es cYBEr� � ! and r � r� � t�
ii� any solution of equations cYBEr� � ! and r � r� � t� after a suitable
change of the basis� is of the form �������

The r corresponding to the trivial Belavin�Drinfeld triple �� and �� are
empty sets�� with r� �

�
�
t�� is called the �standard� r�

�
�
� Maximal triples

I shall say several words about the combinatorics of Belavin�Drinfeld triples�
The whole information about scalar products is contained in the Dynkin
diagram for the algebra g� We shall consider the most interesting case of the
Lie algebras of the type A that is� Lie algebras sln��� for which the Dynkin
diagram is

x x x x� � �

Fig� �

Given a Belavin�Drinfeld triple� it is useful to draw a diagram� corre�
sponding to it� like�

x x xx x

x x x x x

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig� �
��



The upper and lower rows are two copies of the Dynkin diagram A� the lines
between the rows carry an information about the triple� the lines should be
thought as going from the upper low to the lower one� the roots from �� are
the roots at the upper row from which the lines start� the roots from the
lower row are those at which the lines end� they are from ��� The angles
between the roots are determined by the number of edges connecting the
corresponding vertices of the Dynkin diagram� it is therefore easy to under�
stand� looking at the picture� whether the map � preserves scalar products�
To check the nilpotency one needs to draw more than two rows � depicting
the powers of � � For example� for the diagram on Fig� � one draws�

x x xx x

x x x x x

x x x x x

xxxxx

x x x x x

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�
��

�
�
�
�

�
�
��

�
�
�
�

Fig� �

The meaning of Fig� � is clear� the lines going from the �rst row to the third
one represent � �� from the �rst row to the fourth one represent � �� etc�

There are two types of natural equivalences for triples�
i� Tl � ������ � � � ������ �

���� this corresponds to a re ection of the
picture of the triple in the horizontal mirror� T �

l � id�

ii� if a Dynkin diagram has a symmetry � then �G��� �G��� ������ is
a triple and the equivalence is T � G�� G�� � � � �G��� �G��� �������

For An�diagram there is a symmetry� a re ection of Fig� � in the vertical
mirror� let T
 be the corresponding equivalence� we have T �


 � id�
If "�� is any subset of �� then "��� � "���� � j���� is clearly a triple� So it

is interesting to look only for �maximal� triples� i� e� those to which one
cannot add any more vertices�

��



For example� the only nontrivial triple for A� is

x x

x x

�
�
�
�

Fig� �

Exercises� �� Show that for A� there are� up to equivalences� two maximal
triples�

x x

x x

x

x

x x x

x x x

�
�
��

�
�
��

HHHHHHHH

Fig� � Fig� 


�� Show that for A� there are� up to equivalences� four maximal triples�

x x

x x

x

x

x x

x x

x

x

x x

x x

x x x x

x x x x

x x x x

x x x x

�
�
�
�

�
�
�
�

�
�
�
�

HHHHHHHH

HHHHHHHH

�����������

PPPPPPPPPPP

�
�
�
�

PPPPPPPPPPP

�
�
�
�

Fig� � Fig� �

Fig �� Fig� �!

With the growth of rank it becomes more and more di�cult to decide if
a given triple is maximal� For example� the triple on Fig� ��

��



x x

x x

x

x

x

x

x

x

XXXXXXXXXXXXXXX

HHHHHHHH

�����������

Fig� ��

is maximal� but one has to draw several rows like on Fig� �� to see that
loops appear when one adds one more vertex�

If � n �� consists of only one vertex or %�� � %�� �� then the triple is
certainly maximal� We shall enumerate triples with %�� � %�� ��

Proposition 	
 For the Dynkin diagram Al� the number of triples with
%�� � l � � is �

�&l � �� where & is the Euler function� &n� � %fj �
f�� � � � � ngjj is coprime to ng�
Proof�
i� &l � �� is the number of primitive roots of unity of order l � ���

We shall �rst associate a Belavin�Drinfeld triple to any primitive root of
unity of order l � ��� Let � � exp ��i

l��
�� Label the vertices of the Dynkin

diagram Al as shown on Fig� ���

x x x x

Fig� ��

� � �
� �� �� � l

If a and b are labels of two vertices then a is connected by an edge to b if
and only if a � ��b�

Fix a primitive root q� Let �� � fq� q�� � � � � ql��g and �� � fq�� q�� � � � � qlg
more precisely� �i� i � �� �� are the sets of vertices of Al labeled by the
corresponding roots of unity�� Since q is primitive� each of the sets �� and
�� contain l � �� distinct elements�

Let � � �� � �� be the multiplication by q� Multiplying a label qi by q�
we obtain a sequence qi � qi�� � � � � � ql� and the sequence terminates
since ql�� � � is not a label of any vertex� Thus� the map � is nilpotent�

The condition of being neighbors� qi � ��qj is stable under the multipli�
cation by q� therefore � preserves scalar products�

��



Thus� ������ � � is a Belavin�Drinfeld triple� Call it Tq�
Consider an arbitrary Belavin�Drinfeld triple T � ������ � � with %�� �

l � �� We shall prove that it coincides with one of Tq#s�
ii� Denote the vertex omitted from �� by q��� It divides the row of the

diagram Al as on Fig� �� into two segments I� and I��

x x x x x x xl

Fig� ��

� � � � � �

I�z �� � I�z �� �q��

We have q�� � �a for some a� Making� if necessary� a vertical re ection�
we can� without loss of generality� assume that %I� � %I��

Let q� be a label of a vertex omitted from ��� The lower row of the picture
corresponding to T is also divided by q� into two segments J� and J� J� to
the left of q�� J� to the right of it�� The map � preserves neighbors and it
follows that either � � I� � J�� I� � J� or � � I� � J�� I� � J�� The former
case is excluded since otherwise I� � J�� I� � J� and restrictions of � on
the sets Ii� i � �� �� are permutation of these sets and therefore � cannot be
nilpotent�

Thus� � � I� � J�� I� � J� and q� � q�
We cannot have %I� � %I� ' then restrictions of � � on Ii� i � �� �� would

be permutations of these sets� Therefore� %I� � %I��
iii� Consider the restriction of � on the set I�� � � I� � J�� There are

two possibilities� � preserves the order or reverses it� We shall prove that �
cannot reverse the order� Indeed� if � reverses the order then � maps q to
q�� it is useful to draw a picture here�� Then � induces a permutation on
the set � n q � q��� and cannot be nilpotent�

Let us collect obtained information about the triple T in a picture�

x x x x x x xl

x x x x x l x x

����������������

���������������

���������������

���������������

���������������

� � � � � �

� � � � � �

Fig� ��
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iv� For the restriction of � on the set I� we have again two possibilities�
the order is reversed or preserved� We shall prove that it is preserved� If
the cardinality of I� is ! or �� there is nothing to prove� so� without a loss
of generality we assume that %I� 
 �� in other words� a � �� Thus we have
l � 
 since %I� 
 %I��

Extend � to a map "� � � � � by "� � q�� � q and "� � � on ���� The
map "� is a permutation of �� Decompose "� into a product of cycles� Since
q�� maps to q� the decomposition contains a cycle c � � � � q��q � � ��� If there
are other cycles� "� � c � c� � c� � � � then the product c� � c� � � � is a permutation
of some set S� This permutation is the restriction of � on S� thus � cannot
be nilpotent� We conclude that "� is a cycle�

Explicitly� the action of � is���
��

�a�i � � i � i � �� � � � � n� a �

� i � ��i � i � �� � � � � a �
����
�

We shall follow a sequence "�nq���� First� q�� � �a maps to q�� � � l���a�
Then it goes back� � l���a � � l����a � � � � � � l���ka� where l � � � ka � a
but l � � � k � ��a 
 a or l � � � k � ��a but l � � 
 ka� This requires
k steps i�e� this is the result of the action of "� k on q���� At the next step�
� l���ka maps to �ka and then again goes back� �ka � �	k��
a � � � � � �a�
This takes k more steps� Thus� "� �kq��� � q���

But �k � ak � l � �� Therefore� �k � �l��
� � l because l is at least 
�

Therefore� the permutation "� �k has a �xed point and �k � l� Thus "�
cannot be a cycle�

We are left with only one possibility� the restriction of � on I� preserves
the order�

v� The map � preserves the order on I� by iii� and on I� by iv�� Written
explicitly� it means that the map � is the multiplication by q� It will not be
nilpotent if q is not primitive� therefore� the triple T coincides with one of
Tq#s�

vi� The group� generated by  ips Tl and T
� is Z��Z�� But on triples
Tq the operations Tl and T
 coincide� each of them is Tq � Tq�� in general�
it is not so� even for maximal triples� consider the triple corresponding to
Fig� ���� Therefore� only Z� acts on the space of triples Tq� This action
does not have �xed points and we conclude that the number of triples� under

��



equivalences� is �
�
&l� �� as stated� The proof of the Theorem � is �nished�

�

� Quantum spaces

We shall brie y� without going into details� give geometrical motivations
which lead to the notion of quantum spaces�

Let G be a Lie group� g its Lie algebra� In the section �� Lie bialgebras
appeared in the study of deformations of the coproduct on the universal
enveloping algebra Ug� Geometrically� Lie algebra g is the Lie algebra of
left�invariant vector �elds on G� The universal enveloping algebra of the Lie
algebra g can therefore be realized as the algebra of left invariant di�erential
operators on G� Up to topological and functional analytic considerations
convergence� etc��� a function on Rn can be reconstructed� as a Taylor series�
from the knowledge of its derivatives at the origin� For a Lie group G� the
knowledge of derivatives of a function f at the origin is replaced by the
knowledge of values on f of all left invariant di�erential operators at the
unity of G� The elements of Ug are linear functionals on the space FG of
functions on G� so� up to topological considerations� the spaces Ug and FG
are dual to each other� the pairing between X � Ug and f � FG is given
by hX� fi � Xf�je� where e � G is the unity element� It follows then
that the coproduct on Ug corresponds to the product on FG � the usual
product of functions� Thus� deformations of the coproduct on Ug correspond
to deformations of the commutative algebra FG of functions� In�nitesimal
deformations from Section � correspond to particular Poisson brackets on
G ' Poisson brackets which are compatible with the group structure� One
says that Poisson brackets are compatible with the group structure if the
multiplicationm � G�G� G is a Poisson map� In other words� de�ne� for a
given function f onG� a function f"onG�G by the rule f"x� y� � fx�y�� the
compatibility of the Poisson brackets f�� �g means ff� gg" � ff"� g"g� where
the Poisson brackets on G �G are Poisson brackets of the direct product of
two Poisson manifolds� Groups with compatible Poisson brackets are called
Poisson�Lie groups�

In the other direction� it is not di�cult to check that if G carries com�
patible Poisson brackets then its Lie algebra g gets a Lie bialgebra structure�

Compatible Poisson brackets are of a very special form� We shall illustrate

��



it on an example of a matrix group G a subgroup of the group of invert�
ible matrices�� Let aij be matrix elements� Assume that faik� ams g � &im

ks a�

are compatible Poisson brackets� Then faijbjk� amn bnsg � &im
ks ab� this is the

equality ff"� g"g � ff� gg" for f � aik and g � ams �� On the other hand�
faijbjk� amn bnsg � faij� amn gbjkbns � fbjk� bnsgaijamn � &im

jn a�b
i
kb

n
s � &jn

ksb�a
i
ja

m
n be�

cause G � G is equipped with the Poisson structure of the direct product�
Therefore & must be homogeneous of degree � this re ects the fact that �i
in the deformation of the coproduct on Ug belongs to g� g�� Thus� the Pois�
son brackets are quadratic� To quantize constant or linear Poisson brackets�
one simply replaces the Poisson brackets by the commutator� However� it is
not obvious how to quantize quadratic Poisson brackets � we cannot replace
Poisson brackets by the commutator because we don#t know how to order
consistently the quadratic right hand side�

Exercises� �� Show that formulas

fa� bg � ab � fa� cg � ac � fb� dg � bd �

fc� dg � cd � fb� cg � ! � fa� dg � �bc
��!���

are Poisson brackets for four variables a� b� c and d�

�� Show that if a� b� c and d are matrix elements of a matrixA �

	
a b
c d



then the Poisson brackets ��!��� provide GL�� with a Poisson�Lie structure�

�� Show that the Poisson brackets ��!��� of the determinant of A� detA
with all matrix elements vanish�

The main interest about the most commonly appearing groups� like GL�
SO� Sp� ��� � is that they arise as groups of symmetry of a vector space� of
a vector space with a bilinear form� ��� �� The Poisson�Lie groups one can
interpret in this way too� One says that a Poisson�Lie group G acts on a
Poisson manifoldM in a Poisson way if

i� G acts on M �
ii� the action G�M�M is a Poisson map� where G�M is equipped

with a Poisson structure of the direct product�
Again� for a matrix group G acting on a vector space V �� xi � aijx

j� a
similar calculation shows that the Poisson brackets of coordinates� fxi� xjg
must be quadratic in xi�

��



Exercise� For a two dimensional vector space with coordinates x� and x� let

fx�� x�g � x�x� � ��!���

Show that GL�� with the Poisson structure given by ��!��� acts in a Poisson
way on this Poisson vector space�

It turns out that from the point of view of the theory of quantum groups�
the appropriate way to quantize the Poisson brackets ��!��� is provided by
the following commutation relations�

x�x� � qx�x� � ��!���

This is the �rst example of a quantum vector space� Denote this quantum
vector space that is� the algebra of polynomials in x� and x� subjected to
the relation ��!���� by V �

q �
The linear group of transformations preserving the relation ��!��� is poor�

it consists only of rescalings xi � cix
i with some constants ci� It is the

quantum group which is the right analogue of the symmetry group of the
quantum vector space�

General picture


Let U be a quasitriangular Hopf algebra with a universal R�matrix R�
Let U� be a dual Hopf algebra� The pairing between U and U� satis�es
h�a� x� yi � ha� xyi and h� � b��xi � hab� xi�

We shall think of U as of analogue of the universal enveloping algebra
of a semi�simple Lie algebra� Ideologically in the spirit of the Peter�Weyl
theorem� the dual Hopf algebra is generated by matrix elements of represen�
tations of U �

Let � be a representation of U on a vector space V � � maps an element
x � U to a matrix T i

j x��
The coproduct � on matrix elements T i

j looks especially simple�

h�T i
j � x� yi � hT i

j � xyi � T i
j xy� � T i

kx�T
k
j y�

� hT i
k� xihT k

j � yi � hT i
k � T k

j � x� yi
��!���

and therefore
�T i

j � T i
k � T k

j � ��!���

�!



The commutation relations between the matrix elements T i
j are expressed in

terms of a numerical R�matrix R� the image of the universal R�matrix R �P
i ai � bi in the representation� R �

P
i �ai�� �bi�� Let �x �

P
� u� � v��

hT�T�� xi � hT� � T��
X

u� � v�i �
X

T�u��T�v�� � ��!�
�

By the de�nition of R we have
P
u� � v� � R��P v� � u�R� Therefore

hT� � T��
P
u� � v�i � hT� � T��R��P v� � u�Ri

� T� � T�R��P v� � u�R�

� T� � T�R��� � T� � T�
P
v� � u�� � T� � T�R�

� R��PT�v��T�u��R � R��PT�u��T�v��R �

��!���

The ��� means matrix multiplication�
Arguments u� and v� are now in the same order as in ��!�
�� Therefore�

T�T� � R��T�T�R or
RT�T� � T�T�R � ��!���

Because of the form of this relation� this algebra is often called the �RTT��
algebra�

The algebra U� was �rst written in the form ��!��� and ��!��� in ��!��
We shall write the relations ��!��� in a di�erent way� Let P be a permu�

tation of factors in V � V � P x� y� � y � x� Let �R � PR� Then ��!��� is
equivalent to

�RT�T� � T�T�
�R � ��!���

A motivation to use �R instead of R� the eigenvalues of �R have a represen�
tation�theoretic meaning� A theorem� due to Drinfeld ����� says that there
exists an element F such that R � F��q

tF��� where q � exp�� � is the
deformation parameter�� t is the invariant tensor BijXi � Xj � Let C �
BijXiXj � Now let V � V �

P
W� be a decomposition of the tensor square

of the space V into irreducible representations� We have ��C � C � ����
C ��t� where �� is the classical coproduct� Therefore� tjW� �

�
�CjW� �CjV �

Denote this quantity by t�� We have R � PFPq	�		t
F��� therefore� �R �
FPq	�		t
F���

First of all� V � V decomposes into the symmetric and antisymmetric
parts� V � V � S�V � ��V � The operator P takes the value ��� on S�V

��



and ��� on ��V � EveryW� is either is either in S�V or in ��V so the �sign�
of W�� depending on whether W� is S�V or ��V � sign W�� �� P jW� is well
de�ned�

Since q	�		t
jW� � qt� we have

�RjFW� � FPq	�		t
jW� � qt� signW�� � ��!��!�

Thus� the projector decomposition of �R re ects the decomposition of the
tensor product of representations�

Polynomials in the matrix elements T i
j are �quantized� functions on the

group� We also had the Poisson brackets on the coordinates xi and xi � T i
jx

j

was a Poisson map� On the quantum level we have the �RTT relations for
T i
j � Which relations can we impose on x#s in such a way that the map

xi � T i
jx

j is an algebra homomorphism( These relations should also quantize
the Poisson brackets for x#s� Since the quantization of the Poisson brackets for
T i
j produced quadratic relations� we expect to have quadratic relations for the

algebra of x#s as well� Impose a set of quadratic relations for x#s� E�
ijx

ixj � !�

� labels relations� Then for Tx we have E�
ijT

i
ax

aT j
b x

b � E�
ijT

i
aT

j
b x

axb� so we

have to understand which tensors we can move through T i
aT

j
b �

The de�ning relation ��!��� shows that we can move �R and therefore any
function of �R� As we have seen� �R �

P
�)�� where � � qt� sign W�� and

)� is the projector on the space FW�� So essentially� all functions of �R are
linear combinations of projectors�

Conclusion� covariant algebras are given by relations )��
ij
klx

kxl � ! for
some � one or several�� Denote by Al

� l for �left�� the quadratic algebra
de�ned by one projector )�� Equally well� there is a covariant �right� algebra
Ar
� the algebra of covectors xi�� de�ned by xixj)��

ij
kl � !� the covariance is

xi � xaT
a
i �

An important fact is that the RTT�relations can be reconstructed from
the requirement that all the algebras Al

� or all the algebras A
r
�� are covariant�

Indeed� Al
� is covariant means

)��
ij
klT

k
aT

l
b x

axb � ! � ��!����

therefore� )��
ij
klT

k
a T

l
b must be proportional to )� whose lower indices are

a� b�
)��

ij
klT

k
a T

l
b � *ij

uv)��
uv
ab � ��!����

��



Multiplying ��!���� by )
�abcd with � �� �� we �nd

)�T�T�)
 � ! ��!����

for all pairs f�� � j � �� �g�
Lemma ��
 The system ��!���� of relations for the matrix elements T i

j is

equivalent to the RTT�relations �RT�T� � T�T�
�R�

Proof�
i� ��!��� implies ��!�����
We have �R �

P
�)�� moreover�

P
)g � � is a decomposition of unity�

Multiplying �RT�T� � T�T�
�R by )� from the left and )
 from the right� we

�nd �)�T�T�)
 � 
)�T�T�)
 � If � �� � then � �� 
 and it follows that
the relation )�T�T�)
 � ! is satis�ed�

ii� ��!���� implies ��!����
We have �RT�T� � �RT�T� �� � P

��
 �)�T�T�)
 � The last expression� due
to the relations ��!����� can be rewritten asX

�

�)�T�T�)� � ��!����

Similarly� T�T�
�R � ��T�T�

�R �
P

��
 
)�T�T�)
 � Again� due to ��!����� this
equals

P
� �)�T�T�)�� which coincides with ��!����� Thus� ��!��� holds�

�

If �R appears in the process of a deformation then there is a candidate
for an especially nice quantum space� Again� V � V �

L
W� classically�

denote the set of f�g by J � J � J� � J� where J� � f� j signW� � ��g�
Then projectors )� �

P
�	J� )� have ranks rk)� � N	N��


�
� Therefore� a

set )��
ij
klx

kxl � ! contains N	N��

�

relations � exactly the number of rela�
tions which we have classically for commuting variables� The quantum space
de�ned by relations )��

ij
klx

kxl � ! is the only reasonable candidate for the
quantization of CN on which a group G acted in a Poisson way� Similarly�
the quantum space de�ned by relations )��

ij
klx

kxl � ! is the quantization
of the algebra of odd grassmanian� variables�

For GLN�� in the decomposition V � V � S�V � ��V � the summands
S�V and ��V are irreducible� It is natural therefore to call an �R� which
contains only two projectors� an �R�matrix of GL type� One usually rescales �R

��



to have �R � q)��q��)�� where )� and )� are projectors� which are called�
due to their origin� the q�symmetrizer and the q�antisymmetrizer respectively
and we shall often denote )� by S and )� by A��

To conclude�

� Geometrically and physically meaningful �R�matrices decompose into
projectors

��)
�
� � � � � �k)

�
k� �z �

S

���)
�
� � � � � �l)

�
l� �z �

A

��!����

and we know which projectors constitute the q�symmetrizer S and
the q�antisymmetrizer A� respectively as shown by underbracing in
��!������

The ranks of the projectors S � )� � )�
� � � � �)�

k and A � )� �

)�
� � � � ��)�

l are classical� rk)� � N	N��

� �

� Covariant algebras are quadratic algebras of the form )��
ij
klx

kxl � ! or
xixj)��

ij
kl � ! where )� is one of the projectors in the decomposition

��!�����

� The algebra of functions on a quantum group is given by the relations
��!��� and these relations are equivalent to the condition that all the
algebras Al

� are covariant� in other words� the RTT�algebra can be
reconstructed from the Al

� algebras� The same holds if one replaces left
algebras by the right ones�

��� GL type

For GL�type algebras we have only two projectors�� �R � qS � q��A In this
case� to reconstruct the RTT�algebra� it is enough to require covariance of
two algebras� Al

� and Al
� de�ned by relations Sij

klx
kxl � ! and Aij

klx
kxl � !

respectively �����
As we have seen� he covariance of the algebra Al

� implies the condition
)�T�T�)
 � ! for all � di�erent from �� Thus� in the GL case� the covariance
of the algebra Al

� implies
ST�T�A � ! ������

�When R has two eigenvalues� one says that R is of Hecke type� We require additionally

that the ranks of the projectors are �xed rkS � N�N���
�

� rkA � N�N���
�

�

��



while the covariance of Al
� implies

AT�T�S � ! � ������

On the other hand� the covariance of the algebra Ar
� implies the same relation

������� Together� relations ������ and ������� are equivalent to the RTT�
relations� This shows that in the GL case� one can interpret the RTT�
relations in two ways� either as the condition of the covariance of the algebras
Al

� and Al
� or as the condition of the covariance of the algebras Al

� and Ar
��

We shall use the latter interpretation in the sequel�
The algebras Al�r

� are the left and right quantum spaces� If they are
good deformations then the dimension dN� k� of the space of polynomials
of degree k coincides with the dimension of the space of polynomials in N
commuting variables�

dN� k� �

	
N � k � �

k



� ������

So� quantum spaces are quadratic algebras with correct Poincar	e series�
As we shall see below� the behavior of Poincar	e series is intimately related

to the theory of quantum groups�

De�nition
 Given a set of tensors E � fE� � E�
ijg� i� j � �� � � � � n� de�ne

an algebra AE with generators xi and relations

E�
ijx

ixj � ! for all � � ������

Let dN� k� be the dimension of the space of polynomials of degree k in
xi� We say that AE has a Poincar	e�Birkho��Witt property or that AE is a
PBW�algebra� if ������ is satis�ed� In particular the range of the index � is

f�� � � � � N	N��

� g�

Relation )ij
klx

kxl � ! with ) a projector� is an example of ������ but in
general the tensors E� are not organized in a projector�

Requirement that xi are covariant� that is� that the relations ������ are
satis�ed by T i

jx
j implies some relations between T i

j #s�
Assume that we are given two quantum spaces� Al

E with generators x
i and

relations E�
ijx

ixj � ! and Ar
F with generators xi and relations xixjF

ij
� � !�

��



De�nition
 We say that the quantum spaces Al
E and Ar

F are compatible
if the covariance algebra of T i

j has the PBW property that is� its Poincar	e
series coincide with the Poincar	e series for N� variables��

Next subsection is a digression on the Poincar	e series� then we shall con�
tinue with a discussion of compatible quantum spaces in dimension ��

��� Technics of checking the Poincar�e series

Consider an algebra with generators xi and relations ������� Sometimes it
is useful to try to apply the diamond lemma ���� ���� In its easiest form it
says� assume that there is a basis fx�� � � � � xNg in which relations look� for
j 
 i� xjxi is a sum of monomials xaxb with a � b and all the monomials in
the sum are lexicographically smaller or equal xjxi� Take these relations as
instructions� replace xjxi by the right hand side� Apply these instructions to
xkxjxi� where k 
 j 
 i� in two ways� starting from xkxj or from xjxi� If both
ways will eventually produce the same result� to which no more instructions
can be applied then the ordered monomials x��� � � � x�NN form a linear basis in
the algebra� which implies that the algebra has the PBW property�

Note that whether one can apply this procedure depends on a choice of
a basis in the algebra� Such a basis might not exist�

We shall now describe another way of checking the Poincar	e series which
one can apply in the GL case� It uses a di�erential calculus on quantum
planes� developed in �����

�
�
� Di�erential calculus and Poincar�e series

Assume that the quadratic relations are given by

Aij
klx

kxl � ! � ������

where A is the q�antisymmetrizer in the Hecke �R�matrix� �R � qS � q��A�
Let �i be generators of the odd quantum space for �R� that is� the relations

for �i are
Sij
kl�

k�l � ! � ������

One can unify generators xi and �i into one quadratic algebra by requiring
that

xi�j � �Rij
kl�

kxl � ������

�




Exercise� Verify that relations ������ are compatible with ������ and �������
The compatibility here means the following� Let � be a combination of
quadratic expressions Sij

kl�
k�l� Then � � ! in the algebra with generators

�i� Take an element xi� with some i and use ������ to move x to the right�
We obtain an element of the form

P
j �jx

j� with some quadratic in �#s�
elements �j� Since � was !� we must have �j � !� In other words� for each
j� the element �j must be a combination of expressions Sij

kl�
k�l� In the same

manner� there is a compatibility check when one moves �i to the left through
relations ������ for x#s�

At the next step� one adds �q�derivatives� �i in the generators xi� An
algebra of the derivatives �i is the algebra with generators �i and relations

�i�jA
ji
kl � ! ������

note the order of i� j��
To add �i� one needs cross�commutation relations with the already exist�

ing generators xi and �i� These relations are�

�ix
j � � � q �Rjs

it x
t�s � ������

�i�
j �  �R���jsit �

t�s � ����
�

Exercise� Verify that relations ������ and ����
� are compatible with �������
������ and ������ in the above sense of compatibility��

Finally� one adds derivatives �i in �i� An algebra of the derivatives �i is
the algebra with generators �i and relations

�i�jS
ji
kl � ! � ������

The cross�commutation relations between �i and the generators xi� �i and �i
are�

�ix
j � �Rjs

it x
t�s � ������

�i�
j � �� q �Rjs

it �
t�s � ������

�i�j �  �R���klji�l�k � �����!�

��



�

Exercise� Verify that relations ������� ������ and �����!� are compatible
with ������� �������

We shall need the following singlets� the Euler operators Ee and Eo and
the di�erentials d and ��

Ee � xi�i� Eo � �i�i �

d � �i�i � � � xi�i �
�������

Their relations with the generators of the algebra are Exercise� verify
the relations��

Eex
i � xi� � q�Ee� � �iEe � � � q�Ee��i �

Ee�
i � �iEe � �iEo � Eo�i �

�������

E�x
i � xiEo � �iEo � Eo�i �

Eo�
i � �i� � q�Eo� � �iEo � � � q�Eo��i �

�������

dxi � �i � qxid � �id � qd�i �

d�i � �q�id � �id � � � q� � ��Eo��i � qd�i �
�������

�xi � qxi� � �i� � � � q� � ��Ee��i � q��i �

��i � xi � q�i� � �i� � �q����i �
�������

Using operators Ne � � � q� � ��Ee and No � � � q� � ��Eo� appearing
in the right hand sides of ������� and �������� one can rewrite ������� and
������� in a form

Nexh�j � q�xh�jNe � Ne�j�i � q���j�iNe �

Ne�h�j � �h�jNe � Ne�j�i � �j�iNe �
�����
�

Noxh�j � xh�jNo � No�j�i � �j�iNo �

N��h�j � q��h�jNo � No�j�i � q���j�iNo �
�������

��



Exercise� Verify�
�� The Euler operators commute�

EeEo � EoEe � �������

�� Commutation relations between the Euler operators and the di�eren�
tials are

dEe � � � q�Ee�d or Ned � q��dNed �

Eod � d� � q�Eo� or Nod � q�dNo �

Ee� � �� � q�Ee� or Ne� � q��Ne �

�Eo � � � q�Eo�� or No� � q���No �

�������

�� The di�erentials square to zero�

d� � ! � �� � ! � �����!�

�� For the anticommutator of d and � we have

� �� d� � �d � Ee � Eo � q� � ��EoEe �
�

q� � �
NoNe � �� � �������

The last exercise implies that

�xi � xiq�� � �� � ��i � �iq�� � �� � �������

Let Ma�b be a space of polynomials in x and �� of degree a in x and of degree
b in �� For � �Ma�b one �nds� by induction�

�� � �a� b�q� � q�	a�b
�� � �������

where the q�number n�q is de�ned by n�q �
�� qn

� � q � ��q�q�� � � ��qn���

Let Mn � �a�b�nMa�b and M � ��
n��Mn� The space M is a Z��graded

vector space� the grading is given by the degree of a monomial in �#s�
One can consider �i and �i as operators acting on the space M � To this

end� one introduces a vacuum Vac� which satis�es �iVac � ! and �iVac � !�

��



Let X be an expression in xi� �i� �i and �i� To evaluate it on an element
� � M � take an element X�� Using the commutation relations� we move all
�i and �i to the right and evaluate on the vacuum� This gives an element of
M which we denote X��� The consistency requires only that the vacuum is
a representation of the algebra of �i and �i which is clearly true�

For instance� we have ��� � a� b�q�� for � �Ma�b�
For each n� the space Mn � �a�b�nMa�b is �nite dimensional� We have

dimMa�b � dea�dob�� where dea� and dob� are dimensions of the spaces of
polynomials in x of degree a and in � of degree b� respectively� The grading
of Ma�b is ���b�

The space Mn is closed under the action of d and �� Therefore� the
supertrace of their anticommutator of the operator �� vanishes� Str� � !�
which implies X

a�b�n

dea�dob����ba� b�q� � ! �������

for each n�
One can write the set labeled by n� of identities ������� in a compact

form� Let t be an indeterminate� Denote by Pe and Po the Poincar	e series for
even and odd variables� respectively� that is� Pe and Po are the generating
functions for the dimensions de and do� Pet� �

P
a dea�t

a and Pot� �P
a doa�t

a� We have

Pet�Po�t� �
X
n

X
a�b�n

dea�dob����b � �������

Introduce a q�derivative in t� It satis�es� by de�nition� a relation �tt �
� � q�t�t� By induction�

�tt
n � n�q�t

n�� � q�ntn�t � �����
�

As above� �t becomes an operator after we de�ne a vacuum � a one dimen�
sional representation of the algebra of polynomials in �t� Vact� by �tVact � !�
In particular� �ttn� � n�q�t

n���
The formula �����
� shows that the action of �t on the formal power

series in t is well de�ned�
Now� ������� implies

�tPet�Po�t�� � ! � �������

�!



Note that the series Pe and Po start with �� Pet� � � � Ot�� Pot� �
� �Ot�� Therefore�

Pet�Po�t� � � �Ot� �������

as well� Classically q � ��� equations ������� and ������� imply that

Pet�Po�t� � � � �������

For a generic q the same conclusion ������� holds� Here �generic� means
that q is not a root of unity� However� if q� is a primitive root of unity of
order l one can conclude only that Pet�Po�t� � � � tlF tl� for some power
series F � By a di�erent method� without using the di�erential operators� the
formula ������� for generic q was obtained in ��
��

The advantage of having a formula like ������� is that in the GL case
the relations for the odd generators � are strong enough to force the space
of polynomials in � to be �nite�dimensional� Then Pot� is a polynomial and
instead of checking the in�nite number of coe�cients in Pet� one has only
�nite number of checks for Pot��

��� Geometry of ��dimensional quantum spaces

In dimension �� a quantum vector space is a quadratic algebra with two
generators and one relation� This situation can be quickly analyzed ���� and
we shall not stop at it here�

For a ��dimensional quantum space we need � generators and � relations�
Let

E�
ijx

ixj � ! � � � �� �� � � ������

be the three relations� The number of independent monomials of degree k in

dimension � is

	
k � �
k



� so we need to have

	
� � �
�



� �! cubics�

In the free associative algebra with three generators there are �� cubics�
Thus we need �� relations for cubics� How many relations can we deduce
from ������( We have � relations of the form E�

ijx
ixj�xk � ! and � relations

of the form xkE�
ijx

ixj� � !� altogether �� relations� Therefore they cannot
be independent� there should ������� linear combination of them which
vanishes� Therefore�

ei�E
�
jk � E�

ijf�k ������

��



for some tensors ei� and f�k� We shall assume that the tensors ei� and f�k
are nondegenerate�

Let Eijk � ei�E
�
jk all the indices of Eijk are now of the same nature�

before� �� � labeled relations� while i� j� k labeled variables�� The equation
������ now becomes

Eijk � Ql
kElij � ������

where Qi
j � f�je����i e�� is inverse to e�

e�ie
����j � �ji and e�ie

����i � ��� � ������

�ji and ��� are Kronecker delta#s� the fact that two relations ������ hold is
because in dimension �� both indices i and � run from � to ���

A direct inspection shows that classically for commuting variables� Eijk

is the ��tensor� The ��tensor has a good behavior under all permutations
of indices� The moral is that for the PBW�algebras� it is enough that the
E�tensor behaves well only under cyclic permutations of indices � the e�ect
of a cyclic permutation is a rotation in one index by an operator Q�

This simple behavior under cyclic permutations makes possible a clas�
si�cation of PBW�algebras in dimension �� go to a basis in which Q has a
normal form then solve the cyclicity equation ������ for the E�tensor and se�
lect nondegenerate solutions which give exactly three relations for quadrics��
The article ���� contains the result of the classi�cation� The list of PBW�
algebras is quite large� for us it is the beginning of the work� one has to
classify compatible pairs of quantum spaces�

We have now two tensors� Eijk and F ijk� The analysis is quite lengthy �
because one has to work with the Poincar	e series of nine variables T i

j � But
the �nal result ���� is surprisingly simple�

It turns our that EjmnF
mni � x�ij where x is a number in fact� this

relation describes a little more narrow SL���case� when the quantum group
has a central determinant and one can de�ne a corresponding special linear
quantum group� for the general situation� see ������

De�ne Aij
kl � xEklmF

mij� Then the resulting equations say that A is a
projector� A� � A and

� � ��tr�A��A��Q
��
� � � x��P��Q

��
� � � � ������

where P�� is a permutation of spaces � and � and � � x trQ�

��



Surprise� the equations for A imply that �R � � � � � q�A satis�es the
Yang�Baxter equation� where q is a solution of q� � � � ��q � � � ! the
other root de�nes �R���� Classically� � � �� q � � and �R � P �

This �R�matrix is of GL���type and the relations for T i
j ensuring that

the compatible left and right spaces are covariant are nothing else but the
RTT�relations�

In the beginning there was no demand to have a solution of the Yang�
Baxter equations� The demands were to have PBW�algebras and the com�
patibility between them� So� unexpectedly� the study of the correct Poincar	e
series is a machine to produce �R�matrices and quantum groups�

In the list of �R�matrices found in this way in ���� there is an example
which stands out for several reasons� The left quantum space is de�ned by
relations

�zx� �y� � xz � ! �

��z� � yx� ��xy � ! �

zy � ��yz � ��x� � ! �

����
�

Here � is a primitive ��th root of unity� the operator Q has the form

Q �

�
B� �

��

��


CA � ������

The left quantum space ����
� is compatible with an isomorphic as an
algebra� right quantum space� one can take x � �� Thus we have a quantum
group and an �R�matrix�

The �R�matrix is given by

�R � �� �D�* � ������

��



where

�* �

�
BBBBBBBBBBBBBBB�

� �� ��

�� � �
�� �� �

� � ��

� � �
�� �� �

� �� �

� � ��

�� �� �


CCCCCCCCCCCCCCCA

� ������

and
D � diag��� ��� ��� ��� ��� ��� ��� ��� ��� �����!�

with

��� � �� � ����� �� � ���� �

��� � �� � ����� �� � ���� � �������

��� � �� � ����� �� � ���� �

We have q � ���
For the standard Drinfeld�Jimbo deformation� the left quantum space is

given by xixj � qxjxi for i � j� When q is a primitive root of unity of order
l� then the left quantum space has a center generated by elements xi�l� If
one requires that the covariance algebra of T i

j preserves relations x
i�l � ci�

one obtains additional relations for T i
j � The quotient algebra of the algebra

of T i
j by these relations is called a �small quantum group� ��!��
The center of the algebra ����
� is a polynomial ring generated by three

elements of degrees ��
 and �� The algebra ����
� is �nite�dimensional over
its center� the dimension equals �
� ������ Therefore� the quantum group
de�ned by the �R�matrix ������ has �nite�dimensional quotients as well�

The algebra ����
� does not admit ordering� In other words� in any basis�
the de�ning relations are not ordering relations� ordering of x�x�x� will always
produce loops� The algebra ����
� is the �rst example of a PBW�algebra with
this property� Therefore� the �R�matrix ������ is a very particular point in
the moduli space of solutions of the Yang�Baxter equation in dimension ��
Another peculiarity is that the �R�matrix ������ is an isolated point in the

��



space of solutions of the Yang�Baxter equation� it cannot be obtained as a
deformation of any other solution� in particular� one cannot reach it starting
from the classical solution the permutation�� In this sense� this �R�matrix is
non�perturbative�

Call E the algebra ����
�� In the next subsection we prove some of its
properties mentioned above� in particular� the PBW property�

�
�
� Gr�obner base for E
For a homogeneous element f of a free associative algebra A with generators
fx�� � � � � xNg� let �f be a �highest symbol� of f � the lexicographically highest
word in f �

Let B be a quotient algebra of A by some homogeneous relations S� �
fr�� � � � � rMg� Every relation r we write in the form �r � terms� smaller than
�r� we understand it as an instruction to replace �r by the right hand side�
Taking� if necessary� linear combinations of relations� we always assume that
all �r are di�erent�

Let �S� � f�r�� � � � � �rMg�
A word can contain several entries of the form �r� for some �� Comparing

di�erent ways of applying instructions to this word� we may obtain new
instructions � relations� whose highest symbols do not belong to �S�� We add
these relations to S� and obtain a new set S�� Let again �S� be the set of
highest symbols�

Continuing the process� we shall build an eventually in�nite� set S �
��i��Si� which is called a Gr�obner base for A it depends on a choice of gen�
erators fx�� � � � � xNg and on a choice of an order�� Let �S be the corresponding
set of highest symbols�

Now the basis of A� as a vector space� consists of �normal� words �
words� which do not have subwords belonging to �S� This gives sometimes a
way to estimate the Poincar	e series of the algebra� See� e�g�� ���� for further
information about Gr�obner bases�

For the algebra E� written in generators fx� y� zg� as in ����
�� the Gr�ob�
ner base seems to be in�nite ant non analyzable�

There are several other nice sets of generators and one of them leads to

��



a �nite Gr�obner base� Let

x � ���A� ��B � ��C� �

y � � �
��� A�B � C� �

z � ��A� ��B � ��C� �

�������

where � satis�es �� � �
� � ��

� � �
�

In terms of new generators A� B and C the relations are

�A� � �AB �B� � ! �

�C� � �CA�A� � ! �

�B� � �BC � C� � ! �

�������

Choose the order A 
 B 
 C� Then the set ������� of relations gives the
following set of instructions

A�
� ��C� � �CA �

B�
� ���BC � ��C� �

AB � �C� � �CA� ��BC �

�������

Possible overlaps are A�B� AB�� A� and B�� This leads to new instructions

ACA� BC� � ��CAC � ��CBC � ��C�A� ��C�B � �C� �

BCB� ���C�B � ��C� �

AC�
� ���BC�� ��CAC � �CBC � ��C�A� ��C�B �

�������

One has new overlaps and they� in turn� lead to new instructions with highest
symbols BC� and ACBC� We shall not give more details� but it turns out
that now overlaps are all compatible� so the construction of the Gr�obner base
is completed and we have

�S � fA�� B�� AB�ACA�BCB�AC�� BC�� ACBCg � �����
�

�




For such �S it is possible to explicitly describe the normal form�
For a word w � x�x� � � � xk� let �jw� be the beginning� of the length

j that is� �rst j symbols�� of a word www � � � w the word w repeated
su�ciently many times�� For example� ��ACB� � ACBA� �ACB� �
ACBAC�

Lemma
 For �S� as in �����
�� the normal words have a form

C i�jBCC��kACB� � �������

Corollary
 The algebra E has the PBW property�

Proof� Normal words ������� are characterized by ordered triples of numbers
fi� j� kg� as for monomials xi�x

j
�x

k
�� ��

��� slq��� at roots of unity

The simplest example of a quantum space is the algebra V �
q with two gen�

erators x� and x� subjected to the relation ��!���� If one chooses for a left
quantum space V ���q an algebra with two generators x� and x� and the same
relation

x�x� � qx�x� � ������

then the quantum group rather� bialgebra� for the moment we will not talk
about invertibility of quantum matrices� which preserves the relations ��!���

and ������ is the standard Matq��� the matrix elements of T �

	
a b
c d



satisfy relations

ab � qba � ac � qca � bd � qdb � cd � qdc �

bc � cb � ad � da� q � q���bc
������

this is a correct quantization of the Poisson brackets ��!�����
If q is a primitive l�th root of unity� the bialgebra Matq�� has a �nite

dimensional quotient Matq��� one adds

al � dl � � � bl � cl � ! ������

to the relations �������

��



The bialgebra Matq�� has a symmetry interpretation as well� The ele�
ments xl� and xl� lie in the center of V �

q � Let V �
q����

be a quotient of V �
q by

relations x��l � �� and x��l � �� for some constants �� and ��� If one
requires that all the algebras V �

q����
are preserved by the coaction� one �nds

the extra relations ������� the same relations ������ one �nds from a demand
that all the left algebras V ���q���� are preserved�

In this subsection we shall illustrate� on this simple ��dimensional ex�
ample� some phenomena� pertinent to a situation when a non�commutative
quantum space has a large center� loss of quasi�triangularity� loss of semi�
simplicity� appearance of �nite�dimensional Hopf quotients etc�

We shall give a description of the reduced universal enveloping algebra and
of the reduced function algebra in terms of matrix algebras over local rings�
This language seems to be quite appropriate to talk about such algebraic
concepts as Ext�groups� a scheme of an algebra� its Cartan matrix etc� The
material on the matrix structure is partly taken from �����

Notation� nq is a q�number� nq �
qn � q�n

q � q��
and nq+ � �q�q � � � nq is a

q�factorial� Let q be a l�th primitive root of unity� l 
 � so q� �� ��� Denote

"l �

�
l � l � � mod ��
l	� � l � ! mod ��

������

Thus� q�n � � �� �n � ! mod l� �� n � ! mod "l�� nq � ! �� n �
! mod "l�� Denote  � l	"l and "q � q�� "q

�l � �� "q is a primitive "l�th root of
unity�

�
�
� Preliminaries

The Hopf algebra which gives rise as in the section �� to the quantum space
V �
q is an algebra U � Uqsl��� generated by elements K� K��� E and F and

relations
KK�� � K��K � � � KE � q�EK �

KF � q��FK � �E�F � �
K �K��

q � q��
�

������

the coproduct is de�ned on the generators by

�K � K �K � �E � E �K � �� E � �F � F � � �K�� � F � ����
�

��



the counit � and the antipode S are de�ned on the generators by

�K� � � � �E� � ! � �F � � ! � ������

SK� � K�� � SE� � �EK�� � SF � � �KF � ������

The algebra Uqsl�� has a central element� a q�deformed Casimir operator�

C � qK � q��K�� � q � q����FE � ������

If q � exp�� and K � exp�H�� the combination C��
	q�q��
�

� �
�
tends to the

standard Casimir operator H�

� � H
� � FE in the classical limit �� !�

Consider a vector space V �� j�� j � Z	�� j � !� �
�
� � � � �

�l��
�

and � � ��
with a basis femj � m � j� j � �� � � � ��jg� Denote by K�� j�� E�� j� and
F �� j� the operators

K�� j�emj � �q�memj �

E�� j�emj � em��
j �

F �� j�emj � � j �m�qj �m� ��qe
m��
j �

�����!�

In these formulas� the right hand side should be replaced by ! if m� � runs
out of the allowed range�

The operators �����!� realize standard representations of Uq� When q
is not a root of unity� the representations V �� j� exhaust the list of all
irreducible representations�

The expression

R � e�
H�H

�

X
m��

q � q���m

mq+
q
m�m���

� E � F �m � �������

being understood informally� intertwines the coproduct with the opposite
coproduct� However� because of the denominators� the expression �������
does not make sense when q is a root of unity� One may ask whether it is
possible to rede�ne R at these values of q� The answer is negative� A stan�
dard argument goes as follows� If R existed� we would have an isomorphism
V �W � W � V for any two representations of U � for which R is de�ned
R would intertwine the tensor products��

��



Elements x � E
�l� y � F

�l and z � K
�l are central� we have

�z � z � z ��x � x� z � �� x � �y � y � � � z�� � y � �������

There is a family of representations W�ab of dimension "l the index j runs
from ! to "l � ���

K � vj � �q��jvj �

F � vj � vj�� for j � "l � � �

E � vj � �q
��j����qj��

q�q�� jq � ab�vj�� � for j 
 ! �

F � v�l�� � bv� � E � v� � av�l�� �

�������

The values of the parameters �� a and b are not restricted one only needs
� �� !��

In the representation W�ab� the value of the element y is b� the value of

the element z is �
�l�

Assume that V �W � W � V � Then� applying the formula ������� for
the coproduct of the element y� we �nd

yV � z��V yW � yW � z��W yV � �������

where yV and zV are the operators� corresponding to the elements y and z
in the representation V the same for W ��

Take V � W�ab and W � W�cd� Then ������� implies a relation between
�� � b and d� a contradiction�

�� Hopf ideals

Here we collect some information about Hopf ideals of a �nite codimension
in U �

The Hopf subalgebra of Laurent polynomials in K coincides with the
group algebra C�Z� of the additive group Z of integers�

Lemma
 Let I be a proper Hopf ideal in C�Z�� Then I is generated by
Kj � �� for some j�

Proof� Any ideal I in C�Z� is a principal ideal� I � f�� where ft� �
tj � aj��t

j�� � � � �� a� is a polynomial with a� �� !�

�!



The element

�fK� � Kj �Kj � aj��K
j�� �Kj�� � � � �� a� �������

equals

aj��K
j�� � � � �� a��� aj��K

j�� � � � �� a�� � aj��K
j�� �Kj�� � � � �� a�

in the algebra C�Z�	I�C�Z�	I� If I is a Hopf ideal then the element �������
must be zero� In particular� in the expression above� the coe�cient in ��K i

for � � i � j � � must vanish� which gives a�ai � !� Therefore ai � !�
Vanishing of the coe�cient in �� � gives a�a� � �� � !� therefore a� � ���
Thus� fK� � Kj � �� and it is straightforward to check that f� is a Hopf
ideal for such f � �

Consider a Hopf ideal I of a �nite codimension� If E � I then K� � � �
q � q���K�E�F � � I� therefore

K� � ��F � F q��K� � �� � F q�� � ��mod I� � I �

so F � I� Thus the factor�algebra is C�Z���
Assume now that E �	I� Let ,U be the factor�algebra of U by I�
According to the Lemma� Kj � �� � I for some j� Therefore�

Kj � ��E � Eq�jKj � �� � Eq�j � ��mod I� � I �

which implies j � m"l� so ,zm � � in the factor�algebra ,U ,z is the image in ,U
of the central element z � K

�l � U��
Lemma
 The central elements x � E

�l and y � F
�l belong to I�

Proof� Let ,x be the image of x in ,U � Let ft� � ti � bi��t
i�� � � � �� b� be a

characteristic polynomial of ,x in ,U � We have

�fx� � x�z� � x��
i � bi��x�z� � x��

i�� � � � �� b� �

where x� � x� �� x� � �� x and z� � �� z� Thus� in ,U � ,U one has

! � �f,x� � �bi��,x�,z��i�� � � � �� b��� bi��,x
i��
� � � � �� b��

�
Pi��

s��

	
i
s



,x�,z��s,x

i�s
� � bi��,x�,z� � ,x��i�� � � � �� b� �

�����
�

��



where ,x� � ,x� �� ,x� � �� ,x and ,z� � �� ,z� The coe�cient in� for example�
,x�,x

i��
� � is ,z�i� Thus� i � !� therefore� ,x � ! or x � I� Similarly� y � I� �

Denote by Im the ideal

Im � fE�l� F
�l�Km�l � �g � �������

We shall call it a congruence ideal� and the number m � level�
We have shown that each Hopf ideal of a �nite codimension contains a

congruence ideal Im for some m� The minimal m for which it happens� we
shall call the level of the ideal�

Denote Uq	Im by ,Uq�m and the images of the elements E� F and K by ,E�
,F and ,K�

We shall give a complete description of ,Uq�� and of ,Uq��� as an algebra��

�� Equation for C

We shall �nd a polynomial �x� such that � ,C� � !  ,C is the image of
the Casimir operator C �������� Later we shall prove that � is a minimal
polynomial for ,C�

One has
q � q����FE � C � qK � q��K��� � �������

Lemma
 The following relation holds in Uq�

q � q����iF iEi �
i��Y
a��

C � q���aK � q����aK���� � �����!�

�We shall not use it� but it is known �see� e�g� ��
�� that �Uq�� and �Uq�� are quasitrian�
gular� say� for �Uq�� the universal R�matrix is

R �
�
�l

�lX
i�j	


q��ijKi �Kj

�lX
s	


�q � q���s

sq �
q
s�s���

� �Es � �F s � �
������

��



Proof� For i � � this is �������� Induction in i�

q � q����i��F i��Ei�� � q � q����F
Qi��

a��C � q���aK � q����aK����E

� q � q����FE
Qi��
a��C � q���a��K � q����a��K���� �

�������
Use ������� to �nish the proof� �

Corollary
 In ,Uq�m one has

�l��Y
a��

 ,C � q���a ,K � q����a ,K���� � ! � �������

Proof� For i � "l� the lhs of �����!� belongs to the ideal Im� �

Denote by px� a polynomial px� � � � x� � � � x
�l�� and let

pa �
�
"l
p"qa ,K� � a � !� � � � � "l � � � �������

Then
,Kpa � "q�apa � �������

The elements pa are the usual idempotents� decomposing ��

papb � �abpb � � � p� � � � �� p�l�� � �������

De�ne a polynomial �x��

�x� �

�l��Y
a��

x� q���a � q����a� � �����
�

More precisely�

�x� �

���
��
Ql��
a��x� qa � q�a� �  � �

Q�l��
a��x� q"qa � q��"q�a� �  � �

�������

Lemma
 In ,Uq��� one has
� ,C� � ! � �������

��



Proof� We have using �������� the Corollary above and the fact that ,C and
,K commute�

! �
Q�l��
a�� ,C � q���a ,K � q����a ,K����p�b

�
Q�l��
a�� ,C � q���a"qb � q����a"q�b��p�b � � ,C�p�b

�������

for all b� Summing over b and using ������� we conclude that � ,C� � !� �

Remarks� �� For odd l the eigenvalue in ������� corresponding to a � ! is
simple� the others have the multiplicity � � pairs a� l� a�� For l even� "l odd�
the eigenvalue corresponding to a � "l � ��	� is simple� the others have the
multiplicity � � pairs a� "l � � � a�� For l even� "l even� all eigenvalues have
the multiplicity � � pairs a� "l� � � a��

�� If we knew that � is a minimal polynomial� we could immediately
state that there are indecomposable but not irreducible representations� the
center of a semisimple algebra is semisimple�

�
�
� Formatted matrix algebras over graded rings

Let � be a �nite abelian group� �� its dual�
Let A be a ��graded ring over C� that is� A � ��	��A� and if a � A��

b � A�� then ab � A����

Let I be a set� A couple �� consisting of the set I and a map I � �� we
shall call a �format��

De�nition
 A set of matrices X � fX i
jg with indices belonging to the set

I and with entries in A will be called a matrix algebra of format � over A
and denoted by M�A�� if X

i
j � A�	i
�	j
���

Clearly� M�A� is an algebra�

In our examples the ring A will satisfy two conditions�

C� A is local� that is� A	radA is isomorphic to C�

C� The part of A which corresponds to the trivial representation of � is C
itself� in other words� radA � �nontrivial � A��

��



The simplest example is the algebra MnC� of matrices of size n � n�
Here the group � is trivial� The algebra MnC� has only one representation
� a column of the matrix�

Similarly� for any algebra M�A�� the columns provide representation
spaces� Now there might be several types of columns� corresponding to the
chosen format ��

An advantage of the introduced terminology is summarized in the follow�
ing lemma� which generalizes the properties of MnC��

Lemma
 Assume that A satis�es conditions C� and C�� Then the columns
realize principal projective modules ofM�A�� The set of principal projective
modules is in ��� correspondence with types of columns that is� with the
image of ��� The classes of isomorphism of the quotients of the principal
projective modules of each type are in ��� correspondence with the graded
quotients of A�

Therefore� a knowledge that some algebra is isomorphic to M�A� gives a
complete information about the representation theory for this algebra� there
is no need to study �rst irreducible representations� then their extensions etc�

Let �� be the Grassmann algebra in two variables � and �� It is graded
by the parity� the group � is Z�� Essentially� the format is speci�ed by two
numbers� m and n� we shall write � � mjn� The algebra Mmjn��� is the
algebra of matrices 	

X Y

Z W



� �����!�

the entries of the matrices X and W are even� the entries of the matrices Y
and Z are odd elements of ���

Remark� Let B be an algebra� Suppose that we know that it belongs to the
class of formatted algebras over graded rings� i� e� it can be represented as
M�A� for some choice of �� A� I and �� One may ask� how intrinsic the ring
A is� whether it is de�ned by the algebra B� It turns out that for di�erent
rings A and A�� the formatted matrix algebras over them can be isomorphic�
In this case we shall say that A and A� are GM�equivalent GM stands for
�Graded Matrices���

Example� Let A� be a ring over C generated by two elements �� and ���
satisfying ��� � ��� � ! and ���� � ����� The ring A� is graded by Z�� the

��



grading is given by a degree in the variables �i� deg �i � �� i � �� �� The
format is again speci�ed by two numbers� � � mjn� The algebras M�j����
and M�j�A

�� are isomorphic� the isomorphism is given by

	
a� � a��� b�� � b��

c�� � c�� d� � d���



�
	

a� � a����� b��� � b���
c��� � c��� d� � d�����



� �������

where ai� bi� ci� di � C� i � �� ��
Thus� the rings �� and A� are GM�equivalent�

�
�
� Matrix structure

In ����� after a description of irreducible and some indecomposable represen�
tations of ,Uq��� a regular representation of ,Uq�� was decomposed into a direct
sum of indecomposable representations� As a consequence� the algebra ,Uq��
decomposes into a direct sum of ideals� It was noticed in ���� that each of
these ideals is isomorphic to a subalgebra in the matrix algebra whose matrix
elements belong to a Grassmann algebra in two variables�

We shall adopt an opposite point of view and start by establishing ho�
momorphisms into the matrix algebras with Grassmanian entries� Then we
shall prove that the reduced enveloping algebras are direct sums of formatted
matrix algebras over the local ring ��� As explained above� this immediately
provides an entire information about all modules� in particular� the principal
projective modules�

Some homomorphisms into matrix algebras� odd l

Here we shall consider the case when the number l is odd�
Let i � �j � �� Let Ki�� Ei� and F i� be operators corresponding to

� � � in formulas �����!� pay attention to the order of the basis vectors�
m � j� j��� � � � ��j� say� the matrix of the operator Ei� is upper�triangular��

We shall also use a matrix Mi�� de�ned by

Mi�emj � em��j �������

on the same basis as in �����!��
Let � and � be two Grassmann variables� �� � �� � �� � �� � !�

�




Let

Ki��

�
BBB�

Ki�
�

� K l� � i� ��


CCCA � �������

Ei��

�
BBBBB�

Ei�
��� �
� � � �

��� �
� � � � E l

�
� i� ��


CCCCCA � �������

Fi��

�
BBBBB�

F i�
� � � ��
� ���

� � � �

� ���
F  l

�
� i� ��


CCCCCA���

�
BBB�
Mi�

�

� �M l� � i� ��


CCCA ��������

Dots mean that the corresponding entries are zero�
The diagonal entries of the operator Ki� form a sequence fang� n � Z	lZ�

fang � fq�i� q�	i��
� � � � � q��i� q�	 l��i��
� � � � � q��	 l��i��
g �
Since ql � �� we have an�� � q��an for all n � Z	lZ� The non�zero entries
of the operators Ei� and Fi� are exactly on those places which are allowed
by relations KE � q�EK and KF � q��FK� Next� one �nds

Ei�Fi� �

�
BBB�

Ei�F i�

E l� � i� ��F  l� � i� ��


CCCA � ��P �����
�

and

Fi�Ei� �

�
BBB�

F i�Ei�

F l
� � i� ��E l� � i� ��


CCCA � ��P � �������

��



where

P �

�
BBB�

�

��


CCCA � �������

We have �Ek�� F k�� �
Kk��Kk���

q � q��
for all k� so

�Ei��Fi�� � Ki��Ki���
q � q��

�

Therefore� the operators Ei�� Fi� and Ki� provide a representation of the
algebra U �

It is easy to verify that Ei�l � Fi�l � ! due to nilpotency of the
Grassmann variables� The relation Ki�l � � is evident� Thus� the matrices
Ei�� Fi� and Ki� realize a representation of ,Uq���
Matrix structure of ,Uq��� odd l

Formulas ��������������� provide homomorphisms j � �i� ��

�j � ,Uq�� �Mjjl�j��� �������

for j � �� � � � � l� � and a homomorphism

�� � ,Uq�� �MlC� � �����!�

corresponding to j � l��
� �

All the eigenvalues of the operator Ki� are di�erent� so the diagonal
matrices diag!� � � � � !� �� !� � � � � !� are polynomials in Ki� projectors on the
eigenspaces of Ki�� and belong to the image of �i� Now� looking at the
matrices for the operators Ei� and Fi�� one concludes immediately that �j
is an epimorphism for all j � �� � � � � l�

For the Casimir element ,C one computes

�j ,C� � qj � q�j�I � q � q������P � �������

I is the identity operator� for j � �� � � � � l � � and �� ,C� � ��

��



Because of the ���term in �������� �t� �
Ql��
a��x � qa � q�a� is indeed

the minimal polynomial for ,C in ,Uq���
Let Pj � ,Uq��� j � !� � � � � � l�� �z� is the integer part of z� be central

idempotents corresponding to the eigenvalues qj � q�j of the semi�simple
part of ,C� P�� � � ��P� l� �

� � is the central decomposition of unity� We have
,Uq�� � �jPj ,Uq���

Let Yj � Pj ,Uq��� j � !� � � � � � l
�
� and let Bj be the matrix algebras� B� �

MlC� and Ba � Majl�a���� a � �� � � � � � l��� Then �j � ,Uq�� � Bj vanishes
on Yk for k �� j because of the value of ,C� Thus� we have a collection of
epimorphisms Yj � Bj � so their direct sum is an epimorphism

� � ,Uq�� � �� l� �
j��Bj � �������

Let B � �� l
�
�

j��Bj � We have dimB�� � l� and dimBa� � �l�� a � �� � � � � � l���

Therefore� dimB� � l� � l��
�
� �l� � l��

On the other hand� relations ������ clearly allow an ordering� we can
rewrite any expression as� say� a linear combination of monomials ,Ka ,F b ,Ec�
Therefore� dim ,Uq��� � l�� But ������� is the epimorphism� so dim ,Uq��� � l�

and ������� is an isomorphism� We proved�

Proposition
 For odd l� the algebra ,Uq�� is isomorphic to a direct sum of
formatted matrix algebras�

,Uq�� �MlC��
� l
� �M

a��

Majl�a��� � �������

As a byproduct� we saw that the monomials ,Ka ,F b ,Ec are linearly inde�
pendent� This is a version of the Poincar	e�Birkho��Witt theorem for ,Uq���
the monomials ,Ka ,F b ,Ec� with a� b� c � �� � � � � l form a basis�

Exercise� Describe the matrix structure of ,Uq�� that is� K�l � ��� replace the
operators Ki�� Ei� and F i� in formulas ��������������� by the operators
corresponding to � � �� in �����!�� verify the de�ning relations for ,Uq�� and
show

,Uq�� �MlC��MlC� �
l��M
a��

Majl�a��� � �������

��



Remark� The algebra ,Uq�� or ,Uq��� is unimodular� that is� the left and the
right integrals coincide�

R
�
R
L �

R
R they are de�ned by x

R
R � �x�

R
R andR

L x � �x�
R
L�� The location of the integral inside the matrix blocks is very

natural� In the direct sum� describing the matrix structure of the algebra�
there is exactly one block M�j�l������ for which the � � � sub�block realizes
the trivial representation the same holds for even l�� The integral is

Z
�

	
�� �

� �



�������

so the evaluation on the integral might remind to someone a true integration
over Grassmann variables��

Example� l � �

For q� � � we have q � q���� � �� and �q � ��� The Casimir element
satis�es

,C� � � ,C � � �  ,C � ��� ,C � �� � ! � �����
�

For the block M� the value of the Casimir element is �� we have�

�� ,K� �

�
B� q� � �

� � �
� � q��


CA � �������

�� ,E� �

�
B� � � �

� � �
� � �


CA � �������

�� ,F � �

�
B� � � �
�� � �
� �� �


CA � �������

Irreducible representations of dimensions � and � have the same value
��� of the Casimir element� they can be glued indecomposably into a block
M�j�����

�� ,K� �

�
B� � � �

� q �
� � q��


CA � �����!�


!



�� ,E� �

�
B� � � �

� � �
� � �


CA � �������

�� ,F � �

�
B� � � ��

� � �
� � � �� �


CA � �������

The algebra ,Uq�� has two blocks� ,Uq�� �M���M�j�����

Case when l is even� "l is odd

Now l � �"l and "l � �s��� We have q�s�� � ��� so q� � �q is a primitive
"l�th root of unity� A substitution

,E� � � ,E � ,K � � ,K � ,F � � ,F � q� � �q �������

establishes an isomorphism of the algebra ,Uq�� and the algebra ,Uq��� whose
matrix structure we know already�

Matrix structure for even "l

We have l � �s� "l � �s and q�s � ���
We shall describe simultaneously the matrix structures of ,Uq�� K�s � ��

and ,Uq�� K�s � ���
Let K�� j� E�� j� and F �� j� be the operators as in �����!�� j �

!� �� � � � � � s � �� s � �
� � Note that �����!� gives a representation of ,Uq�� only

when j the �spin�� is integer�
Let j� � s � � � j for j � !� �

�
� � � � � s � �� Let C�� j� be the value

of the Casimir element in the representation V �� j�� We have C�� j� �
�q���j � q����j�� Thus� C��� j�� � C�� j��

On the representation V �� s � �
�
�� the Casimir element takes a value

�����
Now the assignment

,K �

�
BBB�

K�� j�
�

� K��� j��


CCCA � �������


�



,E �

�
BBBBB�

E�� j�
��� �
� � � �

��� �
� � � � E��� j��


CCCCCA � �������

,F �

�
BBBBB�

F �� j�
� � � ��
� ���

� � � �

� ���
F ��� j��


CCCCCA���

�
BBB�
M�j � ��

�

� �M�j� � ��


CCCA �����
�

dots mean that the corresponding entries are zero� establishes homomor�
phisms of ,Uq�� into graded matrix algebras over ���

There are also two homomorphisms

,Uq�� �M�sC� � �������

corresponding to the representations V �� s� �
���

We have a collection C of homomorphisms �������������
� and ��������
Parallelly to the case of odd l� one shows that these are epimorphisms and
then� by counting dimensions� that the direct sum of the homomorphisms
from C is an isomorphism� This proves�

Proposition
 For even "l � �s� the algebra ,Uq�� is isomorphic to a direct sum
of formatted matrix algebras�

,Uq�� �M�sC��M�sC� �
�s��M
a��

Maj�s�a��� � �������

The algebra ,Uq�� is a direct sum of those terms in ������� for which a is odd�

,Uq�� �
sM

b��

M�b��j�s��b����� � �������

As for odd l� the matrix description implies the Poincar	e�Birkho��Witt
theorem� The monomials ,Ka ,F b ,Ec� a� b� c � �� � � � � l for ,Uq�� a � �� � � � � �l for
,Uq���� are linearly independent and hence form a basis�


�



Remark� The appearance of the sign � in the formulas �����!� is related to
the existence of the following involution � in the case when "l � �s is even�

� � ,K � � ,K � ,E � ,E � ,F � � ,F � ����
!�

The subalgebra ,Uq���� of �xed points of the involution � consists of polyno�
mials in ,K�� ,F ,K and ,E�

To describe the matrix structure of the algebra ,Uq����� let Qs��� be an
algebra of matrices 	

A B

B A



� ����
��

A and B are s � s matrices� the entries of A are even� the entries of B are
odd elements of the ring ���

Then

,Uq���� �M�sC��
s��M
a��

Maj�s�a��� �Qs��� ����
��

As for the algebra ,Uq����� one keeps those terms in the direct sum ����
��
which correspond to an integer spin� Now the answer depends on the parity
of s the appearance of the algebra Q�� that is� on the residue of l modulo ��

Example� l � �

The algebra ,Uq���
,K ,E � � ,E ,K � ,K ,F � �FK � � ,E� ,F � � ! � ����
��

and
,K� � � � ,E� � ,F � � ! � ����
��

The Casimir operator is ,C � �� ,F ,E� it satis�es ,C� � !�
The realization�

,K �
	
�
��



� ,E �

	
�

�



� ,F �

	 ��
�



� ����
��

This realization is faithful� the algebra ,Uq�� has only one block� ,Uq�� �
M�j�����

We have ,E ,F �� ,F � ,E � !� where ,F � � ,F ,K � so the algebra ,Uq���� is isomor�
phic to the ring �� itself�


�



�
�
� Reduced function algebra

A reduced function algebra ,Fq on SLq�� at roots of unity is the algebra with
generators a� b� c and d� subjected to relations ������� ������ and

ad� qbc � � � ����

�

This last relation� together with dl � �� allows to express a in terms of d� b
and c� the algebra ,Fq is generated by d� b and c only�

The algebra ,Fq also has a formatted matrix structure� Let �� and �� be
two variables which satisfy

�l� � �l� � ! � ���� � ���� � ����
��

The algebra C���� ��� is graded by the degree in the variables �i� deg �� �
deg �� � �� The group � is the cyclic group Z	lZ� The format � is speci�ed
by a set of l numbers� � � n�j � � � jnl��� the number nj corresponds to the
character z � exp��i

l
j�� where z is a given generator of ��

A map

b � ��

�
BBBBBB�

� �
� �

� �
� �

� �


CCCCCCA � c � ��

�
BBBBBB�

� �
� �

� �
� �

� �


CCCCCCA �

d �

�
BBBBBB�

�
q

�
�
ql��


CCCCCCA

establishes an isomorphism

,Fq
��M�j����j�C���� ���� ����
��

all the numbers in the format equal ��� As for reduced enveloping algebras�
this isomorphism implies the Poincar	e�Birkho��Witt theorem�


�



�
�
� Centre

We conclude the subsection by several remarks concerning the centers of the
algebras ,Uq�m�

�
 The center of the formatted matrix algebra Mmjn��� consists of
matrices 	

� � ��� �

� � � ���



� ����
��

with some constants �� � and �� It is ��dimensional�
There is a conjecture by Kaplansky� �A Hopf algebra of characteristic

zero has no non�zero central idempotents� the citation is according to ������
This conjecture is false� the algebras ,Uq�m provide a counter�example�

�
 We have seen eq� �������� that the image of the Casimir element is
of the form 	

�� ��� �

� �� ���



� �����!�

Therefore� the Casimir element does not generate the whole center�
For the algebra U � when q is a primitive l�th root of unity� a theorem see

��
�� states that the center of U is generated by the elements E
�l� F

�l� K
�l and

C and that there is a polynomial relation between these elements� which is
eq� �����!� at i � "l� for i � "l� the r�h�s� of �����!� depends only on C and

K
�l�� The image in ,Uq��� of the algebra� generated by E

�l� F
�l� K

�l and C� is
the algebra of polynomials in ,C� As we saw above� it is a strict subalgebra
in the center�

�
 Let CK� be a centralizer of K in U � One has CK� �
L�l

i��Ai where

Ai is spanned by elements F iKaEi� The subspace A�� �
L�l

i��Ai is an ideal
in CK� and A� is a complementary subalgebra� A � A� �A���

We have a well�de�ned projection � � CK�� A��
Let Z be the center of U � it is a subalgebra in CK�� The restriction

� � �Z of the projection � to the center Z is called a Harish�Chandra
homomorphism� It is known to be injective when q is not a root of unity�

For the reduced algebras ,Uq�� or ,Uq��� the Harish�Chandra homomor�
phism is de�ned in the same way� However� the injectivity is lost� because
the center ,Z is not semi�simple while the algebra ,A� is� One veri�es that
the kernel of the Harish�Chandra homomorphism coincides with the RadZ�


�



It is natural to conjecture that this holds for quantum deformations for all
semi�simple Lie algebras�

� �R�matrices

The �rst subsection is a summary of some essential facts from the theory of
quasi�triangular Hopf algebras and their representations�

The �R matrix for the standard quantum group GLqN� is ���� ����

�Rij
kl � q�ij �il�

j
k � q � q���-l � k��ik�

j
l � ��!���

where -i� � � for i 
 ! and -i� � ! otherwise� The indices run from � to
N �

The �R�matrix ��!��� belongs to a class of �ice� �R�matrices� the precise
de�nition of the ice condition is in the second subsection� There we give a
classi�cation of ice �R�matrices� The main result is that they are all of GL
type�

The �nal subsection establishes a way to build� starting from an arbitrary
�R�matrix of GL�type� �R�matrices for orthogonal and symplectic quantum
groups�

��� Skew�invertibility

The �rst part of this chapter is a short reminder on the general theory of
quasi�triangular Hopf algebras� originating mostly from �����

Then we discuss an important notion of �skew�invertibility� and explain
how it arises in the context of the quasi�triangular Hopf algebras�

In the second part we derive� on a representation level� matrix analogues
of some identities in Hopf algebras� These matrix identities will be needed
for the discussion of the �R�matrices for orthogonal and symplectic quantum
groups�

�
�
� Generalities on Hopf algebras

Let A be a Hopf algebra�







We recall that

mS � id��a� � �a� � � ������

mid� S��a� � �a� � � ������

�� id�� � id� ��� � id � ������

where S is the antipode and � is a counit�
We use a standard notation omitting a summation index� for example�

instead of writing �x� �
P

i x
i
��xi� we shall simply write �x� � x	�
�x	�
�

�� The Hopf algebra A is called almost cocommutative if there exists an
invertible element R � A�A such that

��x�R � R�x� ������

for any element x � A� Here �� is the  ipped coproduct� ��x� � x	�
 � x	�

for �x� � x	�
 � x	�
�

We symbolically write R � a� b instead of R �
P

i ai � bi�
Let ��x� � x	�
�x	�
�x	�
 �

� � �� id�� � id������ By �������
we have

x	�
a� x	�
b� x	�
 � ax	�
� bx	�
 � x	�
 � ������

x	�
 � x	�
a� x	�
b � x	�
 � ax	�
� bx	�
 � ����
�

Let u � Sb�a� Applying id� S � S� to ������ and multiplying terms in
the inverse order� one obtains

S�x�u � ux � ������

Applying id� S � S� to ����
� and multiplying terms� one obtains

xSu� � Su�S�x� � ������

Eqs� ������ and ������ hold for an arbitrary x � A so the element Su�u
is central�

Exercises�


�



�� Take a  ip of ������� �x�R�� � R����x�� and derive� parallelly to
������ and ������� identities

xv � vS�x� � ������

S�x�Sv� � Sv�x � �����!�

where v � aSb��

�� This exercise is taken from ��!��
Let A be a Hopf algebra not necessarily almost cocommutative�� Let T

be an operator on A�A de�ned by

T a� b� � aSb	�
�b	�
 � b	�
 � �������

Show that T satis�es the Yang�Baxter equation� T��T��T�� � T��T��T��� Show
that for a cocommutativeA� the operator T reduces to the identity operator�

�� The Hopf algebra A is called quasi�triangular if

�� id�R � R��R�� � �������

id���R � R��R�� � �������

Exercise� Show that any of these formulas� together with ������� implies the
Yang�Baxter equation

R��R��R�� � R��R��R�� � �������

Applying � � id� id to the formula ������� gives R � � � id�R�R or�
upon canceling by R�

�� id�R � � � �������

Similarly� an application of id� id� � to ������� gives

id� ��R� � � � �����
�

Applying S to the �rst tensor argument of �������� multiplying the �rst
two arguments and using �������� one obtains

S � id�R � R�� � �������


�



Similarly�
id� S�R�� � R � �������

Together� eqs� ������� and ������� imply

S � S�R � R � �������

�� Some properties of the element u

An immediate consequence of ������� is

v � Su� � �����!�

Let R�� � c � d� We have � � id � S�RR��� � id � S�ac � bd� �
ac� Sd�Sb�� Using �������� one can rewrite it in the form

a�a� bSb�� � � � �������

where the prime means another copy� the full version of a�a � bSb�� isP
i�j aiaj � bjSbi�� Multiplying the tensor terms of ������� in the inverse

order� we get bua � �� or� by ������� bS�a�u � �� On the other hand�
ubS�a� � S�b�uS�a�� which� by �������� equals bua � �� Thus� the ele�
ment u is invertible�

u�� � bS�a� � �������

Exercise� Prove that the element u is invertible in the general almost cocom�
mutative setting i�e�� without assuming the quasi�triangularity��

Using the invertibility of u� one can rewrite ������ in the form

S�x� � uxu�� � �������

In particular� the antipode S is invertible since S� is invertible�� Note that
in the quasitriangular situation� eqs� ������� ������ and �����!� follow from
������ because of �����!� and the invertibility of S�

For x � u� eq� ������� gives

S�u� � u � �������


�



For x � Su�� eq� ������ gives S�u�u � uSu�� which� in view of ��������
implies

uSu� � Su�u � �������

�� Coproduct of u

$From quasi�triangularity properties ������� and ������� it follows that

����R� � R��R��R��R�� � �����
�

or
a	�
 � a	�
 � b	�
 � b	�
 � aa�� � a�a���� b��b��� � bb� � �������

where� as usual� primes denote di�erent copies�
Rewriting the Yang�Baxter equation ������� in the form R��

��R��R�� �
R��R��R��

�� and using �������� we obtain

a�a�� � Sa�b� � bb�� � a��a� � b�Sa�� b��b � �������

Now

�u� � Sb	�
�a	�
� Sb	�
�a	�

	������

� Sbb��� aa��� Sb��b����a�a���

� Sb��ua��� Sb��b����a�a���
	�����

� Sb��S�a���u� Sb��b����a�a���

� SSa���b��u� Sb��b����a�a���
	������

� Sb�Sa����u� Sb���b���a���a�

� S�a���Sb��u� Sb���ua�
	������

� Sa���Sb��u� b��ua�

	������

� R�� � Sb��u� ua�

	�����

� R�� � Sb��u� S�a��u

	������

� R�� � b�u� Sa��u

	������

� R��R��

�� � u� u �
�������

A number over ��� refers to an equation which is used in the corresponding
equality�

Denote the element R��R � A�A by �� � � R��R� We obtained

�u� � ��� � u� u � �����!�

�!



Obviously� ��x� � �x�� for any x � A� The element � plays in impor�
tant role in the theory of quasi�triangular Hopf algebras� a map from A� a
dual Hopf algebra� to A� f � h�� fi� the pairing with the second argument
of �� is called a factorization map� The algebra A is called factorizable if the
factorization map is not degenerate and A is called triangular if � � ���

For x � u� eq� ������ gives using �����!��

R � u� u � u� u � R �������

note that this equality follows from eqs� ������� and ������� as well��
Using now that �Sx�� � S � S���x� for any x� one obtains

�Su�� � ��� � Su�� Su� � �������

Therefore� the element g � uSu��� is group�like� �g� � g � g� the fourth
power of the antipode is given by the conjugation by g� S�x� � gxg���

For the central element uSu� we have �uSu�� � ��� � uSu�� uSu��
If there exists a central element � � A such that �� � uSu� and ��� �
��� � � � �� one says that A is a ribbon Hopf algebra� the element � is then
called the ribbon element�

Exercise� Show that ��� � �� S�� � � and R � �� � � �� � � R�

�
�
� Matrix picture

Let t be a representation of A in a vector space V � The numerical R�matrix
is

R � t� t�R� �������

or� in some basis of V � Rij
kl � ta�iktb�

j
l � As usual� P will denote the permu�

tation matrix�
Eq� ������� produces the following matrix equation

Rij
kl.

sl
it � �sk�

j
t � �������

where . � t� t�a� Sb��� .ij
kl � ta�iktSb��

j
l �

Thus for �R � PR� �Rde
af � Red

af � and �. � P.� �.ba
cd � .ab

cd� we have

�Rba
cd
�.de
af � �ec�

b
f � �������

��



One can rewrite it without indices as

tr� �R��
�.��� � P�� � �����
�

We could have used instead of ������� an equivalent relation � � id �
S�R��R� � id� S�ca� db� � ca� Sb�Sd�

	������

� a�a� Sb�b� to obtain

in the matrix form
tr� �.��

�R��� � P�� � �������

De�nition
 Given an operator �R� a solution of eq� �����
� respectively� eq�
�������� is called a right respectively� left� skew inverse of �R� The operator
�R is called skew�invertible if it has left and right skew inverses�

We are concerned only with a �nite�dimensional case� in which the rela�
tions �����
� and ������� are equivalent� A��B�ebcf � Aes

ctB
tb
sf is an associa�

tive product on the space of tensors with two upper and two lower indices�
the permutation P ij

kl � �il�
j
k is a unit element for the operation �� and eq�

�����
� correspondingly� �������� de�nes �. as the right correspondingly�
left� inverse of �R with respect to ��� In a �nite�dimensional algebra left and
right inverses when one of them exists� coincide�

This product re ects a product �� ��� � � �� � ��� �� de�ned for
elements of the tensor square of an arbitrary algebra� for x� y � A �A and
z � x � y let X � t � t�x�� Y � t � t�y� and Z � t � t�z� be their
images for the representation t� Then Z ij

kl � Xaj
kbY

ib
al or �Z � �X ���Y �

Let Q � tu� be the image of the element u� Qi
j � tSb��ikta�

k
j � .ki

jk�
or

Q� � tr� �.��� � �������

Similarly� for "Q � tSu�� we have

"Q� � tr� �.��� � �������

Thus�
tr� �R��Q�� � I� and tr� "Q�

�R��� � I� � �����!�

�More generally� for an element � � ���� � ��n � A�n and an element � � ��� � A�A
one de�nes � � �kl �� �� � � � �� ��k � � � � � �l� � � � � � �n and �kl � � �� �� � � � � �
�k� � � � � � ��l � � � � � �n� then there are rules like �x��y��� � z�� � �y��z��� � x���
x��x��x�� � x�� � �x��x��� etc�

��



where I stands for the identity operator in a corresponding space�
If the representation t is irreducible� the central element uSu� takes a

constant value� the square of the value of the ribbon element� Thus� for an
irreducible representation� the product Q "Q is proportional to unity�

Exercise� Show that the standard �R�matrix ��!��� is skew�invertible with

�.ab
cd � q��ab�ad�

b
c � q � q���-d � c�q�c��d�ac �

b
d � �������

Show that
Qa
b � q��N��a���ab and "Qa

b � q���a�ab � �������

so the value of the square of the ribbon element is q��N �

We now adopt another point of view and forget that there was a quasi�
triangular Hopf algebra behind� We shall leave� as a trace of quasi�triangu�
larity� only the assumption that the numerical matrix �R is skew�invertible�
and derive� purely in the matrix language� some consequences for �.� of the
Yang�Baxter equation�

Below we constantly use the following simple fact�

tr�P��� � I� � �������

Multiplying the Yang�Baxter equation �R��
�R��

�R�� � �R��
�R��

�R�� from the
left by �.a�� from the right by �.�b a and b should be understood as numbers
of some copies of the space V �� taking traces in the spaces � and � and using
�����
� and �������� we obtain after relabeling spaces � we do it in order to
avoid a redundancy of unnecessary symbols� the result is formulated for the
spaces with numbers �� � and ��

tr� �.��
�R��

�R���P�� � P��tr� �R��
�R��

�.��� � �������

Exercise� The Yang�Baxter equation implies that �R��
�R��

�Rn
�� � �Rn

��
�R��

�R��

and �Rn
��
�R��

�R�� � �R��
�R��

�Rn
�� for an arbitrary integer n� Show that

tr� �.��
�R��

�Rn
���P�� � P��tr� �R

n
��
�R��

�.��� �������

and
tr� �.��

�Rn
��
�R���P�� � P��tr� �R��

�Rn
��
�.��� � �����
�

��



Deduce from ������� and �����
� that

tr� �.��
�Rn��
�� � � P��tr� �R

n
��
�R��Q�� � �������

tr� �.��
�Rn��
�� � � P��tr� �R��

�Rn
��Q�� �������

and then
tr� "Q�

�Rn��
�� � � tr� �R

n��
�� Q�� � �������

Since the permutation matrix P squares to the identity� we can rewrite
������� as

P��tr� �.��
�R��

�R��� � tr� �R��
�R��

�.���P�� � �����!�

Multiplying �����!� from the left by �.a�� from the right by �.�b� taking traces
in the spaces � and � and using �����
� and �������� we obtain

tr�� �.a�P��
�.��

�R��P�b� � tr��Pa� �R��
�.��P��

�.�b� � �������

This equation can be simpli�ed� The expression under the trace in the
l�h�s� can be rewritten as �.a�P��

�.��
�R��P�b � �.a�P��P�b

�.�b
�Rb�� Now the

trace in the space ! can be taken by ��������� so the l�h�s� of ������� is
tr� �.a�P��

�.�b
�Rb��� We have

tr� �.a�P��
�.�b

�Rb�� � tr� �.a�P��
�.�b� �Rb�

� tr�P��
�.a�

�.�b� �Rb� � tr�P��
�.�b

�.a�� �Rb�

� tr�P��
�.�b� �.a�

�Rb� � tr� �.�bP��� �.a�
�Rb�

� �.�b
�.a�

�Rb� �

�������

In a similar way one simpli�es the r�h�s� of ������� and obtains after rela�
beling spaces�

�.��
�.��

�R�� � �R��
�.��

�.�� � �������

Assume that an operator B has a left skew inverse A� tr�A��B��� � P�� or
A��B � P �� Then for any operator X�� which acts as the identity in the

��



space �� we have

tr�A��X�B��� � tr��A��X�P��B���

� tr��A��X�B��P��� � tr��A��B��X�P���

� tr�P��X�P��� � trX�I� �

�������

where I� is the identity operator in the second space�
Therefore� taking tr� of �������� one obtains

�R��Q�
�.�� � Q�I� � �������

similarly� taking tr� of �������� one obtains

�.��
"Q�

�R�� � I� "Q� � �����
�

Here Q and "Q are the operators de�ned in ������� and ��������
On the other hand� one can rewrite eq� ������� as P��tr� �.��

�R��
�R��� �

tr� �R��
�R��

�.���P�� or

tr� �.��
�R��

�R���P�� � P��tr� �R��
�R��

�.��� � �������

Exercises�

�� Multiply ������� from the left by �.a�� from the right by �.�b� take traces
in the spaces � and � and obtain

�.��
�.��

�R�� � �R��
�.��

�.�� � �������

�� Assume that an operator B has a left skew inverse A� tr�A��B��� � P���
Show� similarly to ������� that

tr�A��X�B��� � trX�I� � �������

�� Apply tr� or tr� to eq� ������� and deduce that

�.��Q�
�R�� � Q�I� ����
!�

and
�R��

"Q�
�.�� � "Q�I� � ����
��

��



�� Let � � a� Sb� � A� A R � a � b is the universal R�matrix�� Show
that

R�������� � ������R�� � ����
��

R�������� � ������R�� � ����
��

Show that these equalities induce� on the level of a representation� equalities
������� and ������� respectively�

�� What are Hopf�algebraic counterparts of eqs� �������� �����
�� ����
!�
and ����
��(

Write equations �������� �����
�� ����
!� and ����
�� in the form

Q�
�.�� � �R��

�� Q� � ����
��

�.��
"Q� � "Q�

�R��
�� � ����
��

�.��Q� � Q�
�R��
�� � ����

�

"Q�
�.�� � �R��

��
"Q� � ����
��

A compatibility of these equations provides new relations��
Comparing tr� of eqs� ����
�� and ����

��

Q�
"Q� � tr� �R

��
�� Q�� and "Q�Q� � tr�Q�

�R��
�� � ����
��

and using the cyclic property of trace to move Q�� we conclude that

Q "Q � "QQ � ����
��

This is a matrix counterpart of eq� ��������
Using ����
�������
��� we can express in two di�erent ways combina�

tions Q�
�.��

"Q�� Q�
�.��Q�� Q�

"Q�
�.��� �.��

"Q�Q�� "Q�
�.��

"Q� and "Q�
�.��Q�� This

�Eqs� �����	
� and �����	�� also have a nontrivial compatibility relation� R�� commutes
with ���

��
��
����

�




results in

�R��
��Q�

"Q� � Q�
"Q�

�R��
�� � �����!�

�R��
��Q�Q� � Q�Q�

�R��
�� � �������

"Q�
�R��
�� Q� � Q�

�R��
��

"Q� � �������

"Q�
�R��
�� Q� � Q�

�R��
��

"Q� � �������

�R��
��

"Q�
"Q� � "Q�

"Q�
�R��
�� � �������

�R��
��

"Q�Q� � "Q�Q�
�R��
�� � �������

Eqs� ������� and ������� re ect the fact that for a quasi�triangular Hopf
algebra A� elements u�u and Su��Su� commute withR see eq� ���������

It is interesting to compare eqs� �����!� and ������� in the Hecke case�
when the �R�matrix satis�es a quadratic equation �R� � � �R � � with � �� !�
Rewriting eq� ������� as �R��Q�

"Q� � Q�
"Q�

�R�� we used that Q commutes
with "Q� and subtracting from �����!� we obtain

Q "Q � const � �����
�

So� even if a representation t is not irreducible but the �R�matrix is of Hecke
type� the value of the square of the ribbon element on all subrepresentations
of t is the same�

If � � ! i�e� �R is triangular� �R� � ��� eq� ����
�� implies immediately
that Q "Q � I�

Exercise� Suppose that operators Q and "Q are invertible� Show� without
taking skew inverses� that eqs� ������� and ������� follow from eqs� �����!��
�������� ������� and ��������

Use ������� or multiply ������� from the left by Q� and use ����
�� �
to obtain

tr� �R��
�R��
��Q�� � Q�P�� � �������

Therefore� if Q is invertible then �R�� has a skew inverse �/� �/�� � Q�
�R��Q

��
� �

On the other hand� assume that �R�� has a skew inverse �/� Multiply
������� by �/�� and take tr� to obtain tr��/���Q� � I��

��



Therefore� Q is invertible i� �R�� has a skew inverse� Similarly� "Q is
invertible i� �R�� has a skew inverse�

It follows then that Q is invertible i� "Q is invertible�
There is also an implication� Q is invertible� �. is invertible it follows

immediately from� for example� ����
���
Assuming that the operator �. is invertible� one can rewrite the Yang�

Baxter equation entirely in terms of �.� To this end� rewrite eq� ������� in
the form

�.��
�R��

�.��
�� � �.��

��
�R��

�.�� � �������

Multiplying ������� from the left by �.a�� from the right by �.�b� taking traces
in the spaces � and � and using �����
� and �������� we obtain

P��tr� �.��
�.��
��
�.��� � tr� �.��

�.��
��
�.���P�� � �������

Note that on the way from the Yang�Baxter to eq� ������� we were making
only reversible transformations� so eq� ������� is equivalent assuming the
skew�invertibility of �.� to the original Yang�Baxter equation�

We conclude by a remark that from the Hopf�algebraic point of view the
invertibility of �. is natural� The element � � a � Sb� � A � A has an
inverse�

��� � a� S�b� � �����!�

Also� the element R�� has a left and right� skew�inverse � that is� the
inverse with respect to the multiplication ���

� � S�a�� b � �������

$From the Hopf�algebraic perspective the matrix identities which we derived
are quite transparent� However� for the construction of orthogonal and sym�
plectic �R�matrices one needs the matrix form of the identities� so it is impor�
tant to understand how much one can derive using only matrices�

Exercises�

�� Verify �����!� and �������� show that

R�������� � ������R�� � �������

R�������� � ������R�� � �������

��



R�������� � ������R�� � �������

R�������� � ������R�� � �������

�� What are Hopf�algebraic counterparts of eqs� ������� and �������(

��� Ice �R�matrices

The standard �R�matrix ��!��� has two properties� it is of Hecke type that
is� it has two eigenvalues� and it satis�es the so�called �ice� condition which
means that �Rij

kl can be di�erent from zero only if the pair of the upper
indices fi� jg is a permutation of the pair of the lower ones� fi� jg � fk� lg or
fi� jg � fl� kg� Here we shall explain that these two properties Hecke and
ice� are not independent� we shall introduce the notion of indecomposable ice
�R�matrix and demonstrate that such �R�matrices satisfy the Hecke condition��
Ideologically� this shows that the search of ice solutions of equations similar
to the Yang�Baxter equation is justi�ed only in the Hecke case and then
one imposes the Hecke condition �rst� as it is done in ���� for the dynamical
Yang�Baxter equation��

Let �Rij
kl � aij�

i
l�
j
k�bij�

i
k�

j
l be an ice matrix� We �x bii � ! for uniqueness�

Let also ai � aii�
We suppose that the matrix �R is invertible and skew�invertible� It follows

then an easy exercise� that ai �� ! and aij �� ! for all i and j�

Assume that �R satis�es the Yang�Baxter equation� Y ikj
abc � !� where Y ikj

abc �
 �R��

�R��
�R�� � �R��

�R��
�R���

ijk
abc�

When two indices among fi� j� kg are di�erent� the equation Y ikj
abc � !

gives here i �� j��

aijbijbji � ! � ������

bija�i � aibij � aijaji� � ! � ������

bija�j � ajbij � aijaji� � ! � ������

The opposite is not true� there are many Hecke R�matrices which cannot be brought
to an ice form by a change of a basis�

��



For all three indices fi� j� kg di�erent� i �� j �� k �� i� equations are

aijaji � ajkakj�bik � bijbjkbij � bjk� � ! � ������

ajkbijbik � bijbjk � bikbkj� � ! � ������

aijbjkbik � bijbjk � bjibik� � ! � ����
�

Let � be a graph with vertices i� We draw an oriented edge �ij from the
vertex i to the vertex j if the number bij is not zero�

Since aij �� !� eq� ������ shows that two vertices can be joined by not
more that one edge�

When the graph � is not connected� equations� corresponding to di�erent
connected components� do not notice each other� So� one has to study only
the situation when the graph � is connected�

De�nition
 We say that the ice �R�matrix is indecomposable if its graph �
is connected�

Proposition
 Let �R be an invertible and skew�invertible solution of the
Yang�Baxter equation� Assume that �R satis�es the ice condition and is
indecomposable� Then �R is of Hecke type that is� it satis�es a quadratic
equation��

Proof� Since aij �� ! for all i and j� eqs� ������ and ����
� imply

bijbik � bijbjk � bikbkj � ! � ������

bjkbik � bijbjk � bjibik � ! � ������

i� Suppose that the graph � has edges �ij and �jk� Then � has an edge �ik�
as on the Figure�

x

x

x
Z
Z
ZZ� �

�
���
�

i

j

k

This is an immediate consequence of eq� ������� bkj � ! because� by
assumption� bjk �� !� therefore� bijbik � bjk� � ! but� by assumption� bij �� !�

�!



ii� Suppose that the graph � has edges �ij and �kj� Then � has either an

edge �ik or an edge �ki� as on the Figures�
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x
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��	
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�
�
��	

i

j

k i
or

j

k

To prove this� interchange j and k� j 	 k� in eq� �������

bkjbij � bikbkj � bkibij � ! ������

and note that either bik or bki is !�
iii� Situations when � has edges �ji and �kj or edges �ji and �jk are considered
similarly�

We conclude�

a� If � contains two sides of a triangle� it contains the third side� This
immediately implies since � is connected� that � is a full graph� that is�
every two vertices are joined� In other words� for each pair i� j� at least one
number� bij or bji� is not zero� fbij� bjig �� f!� !g�
b� An oriented triangle of � is never a cycle see Figures above�� By a�� � is
the full graph� an easy exercise shows then that � has no cycles� Therefore�
orientations of edges induce an order on the set of vertices and we can relabel
vertices in such a way that � has an edge �ij � � if and only if i � j� In other
words� bij �� ! if and only if i � j�

Consider a triangle with vertices i� j and k� i � j � k� Then the oriented
edges are �ij� �ik and �jk� We have bji � bkj � !� eq� ������ shows that
bik � bjk� eq� ������ shows that bik � bij� Therefore� for all i and j with
i � j the parameters bij take the same value� say b� bij � b�

At this stage� eqs� ������� ������ and ����
� are solved and the �R�matrix
has the form

�Rij
kl � aij�

i
l�

j
k � b-l� k��ik�

j
l � �����!�

iv� Eq� ������ simpli�es now� it implies that all the products aijaji take the
same value� Denote this value by a� aijaji � a for all i and j with i �� j�

��



v� The remaining two equations� ������ and ������ imply that for all i the
parameters ai satisfy a quadratic equation

a�i � bai � a � ! � �������

Now it is immediate to verify that the matrix �R satis�es the same quadratic
equation

�R� � a� b �R � �������

The proof of the Proposition is �nished� �

When �a� b� � !� the matrix �R has a nontrivial jordanian structure�
Assume that eq� t� � bt � a � ! has two di�erent roots �� and ���

In this case the matrix �R is diagonalizable and has two projectors� Let
m correspondingly n� be the number of those ai which are equal to ��

correspondingly ���� Then the ranks of the projectors are
mm� ��

�
�

nn� ��

�
�mn and

mm� ��

�
�
nn� ��

�
�mn� These are exactly the ranks

of the symmetrizer and the antisymmetrizer for the superspace of dimension
mjn� The �R�matrices� constructed in the Proposition above� are called the
multiparametric �R�matrices for the quantum supergroups GLqmjn�� we have
shown that with the ice condition there are essentially no more solutions�

��� Construction of orthogonal and symplectic �R�mat�

rices

Let V be a vector space and V � its dual� The natural pairing between V
and V � can be used to de�ne either a symmetric or antisymmetric scalar
product on the space V � V �� This scalar product is invariant under the
natural action of the group GLV � of general linear transformations of the
space V � Therefore� GLV � gets imbedded into a corresponding orthogonal
or symplectic group�

Such logic goes very well for quantum spaces also� We shall model in this
way quantum spaces for orthogonal and symplectic quantum groups�

�� Yang�Baxter equation and ordering

A quantum space� being de�ned by only a part of projectors of an �R�
matrix� does not carry the whole information about the �R�matrix itself� It is

��



not di�cult to �nd a quantum space which can be de�ned by several di�erent
�R�matrices Exercise� give an example��

However� there is a convenient way to encode an �R�matrix in a framework
of quantum spaces� It requires several copies of a quantum space� Let xi be
coordinates of some quantum space� We shall not be interested in commuta�
tion relations between the elements xi� rather� we introduce copies� say x��i�
x��i etc� and de�ne commutation relations between di�erent copies to be

xM�ixN�j � �Rij
kl xN�kxM�l ������

for M � N � The relations ������ allow to reorder any multilinear combina�
tion xM��

i�xM��i� � � � xMp�ip with pairwise distinct labels M��M�� � � � �Mp

in the descending with respect to the labels M��M�� � � � �Mp� order�
There are two ways to reorder a monomial xM��i�xM��i�xM��i� � with

M� � M� � M�� in a descending way� starting from xM��i�xM��i� or
xM��i�xM��i�� The equality of two resulting ordered expressions is a com�
patibility condition� Assume that monomials xM��i�xM��i� � � � xMp�ip�
where M� 
 M� 
 � � � 
 Mp� are linearly independent� Then the com�
patibility condition is precisely equivalent to the Yang�Baxter equation for
the matrix �R� This interpretation of the Yang�Baxter equation is very useful
especially in cases when the index i of coordinates xi is composite like� for
instance� a pair of indices f�� �g if one wants to view the elements T �

� of the
quantum matrix as coordinates of a quantum space��

In the sequel� to avoid the cumbersome notation xM�i� we shall write
xiyj � �Rij

kl y
kxl instead of �������

�� Assumptions

Our starting point is a solution �R of the Yang�Baxter equation� We
impose several conditions�

A�
 �R is invertible�

A�
 �R is skew�invertible with a skew inverse �.�

A�
 an operator Q de�ned by ������� is invertible thus� "Q de�ned by
������� is invertible as well��

��



As any solution of the Yang�Baxter equation� �R de�nes a quantum group�
in this subsection it will be enough to understand it as an algebra generated
by T i

j and T���ij with relations

�R��T�T� � T�T�
�R�� ������

and
TT�� � T��T � I � ������

or T i
j T

���jk � T���ijT
j
k � �ik�

We need one more assumption� The relations �R��T�T� � T�T�
�R�� imply

that W��T�T� � T�T�W�� for any polynomial W in �R� W �
P

� c� �R
�� We

shall say that �R is rigid if every W for which W��T�T� � T�T�W�� is a
polynomial in �R� And this is our assumption�

A�
 �R is rigid�

�� Auxiliary formulas

Here are some immediate consequences from ������ and ������� First�

T��
�

�R��T� � T�
�R��T

��
� � ������

�R��T
��
� T��

� � T��
� T��

�
�R�� � ������

Multiplying ������ by �.a� from the left� by �.�b from the right and taking
traces in the spaces � and �� we obtain as usual� after relabeling spaces�

tr� �.��T
��
� P��T�� � tr�T�P��T

��
�

�.��� � ����
�

Attention� one cannot move T� cyclically under the tr� in ����
� because
the matrix elements of T� do not commute with matrix elements of other
operators in the expression�

Tracing ����
� in the spaces � or � gives

tr�T�P��T
��
� Q�� � Q� � ������

tr� "Q�T
��
� P��T�� � "Q� � ������

��



Sometimes it is more transparent to write eq� ����
�� as well as eqs� ������
and ������� in indices�

�.ua
vb T

���biT
j
a � T s

v T
���ut �.

tj
si ������

and
T a
i T

��Q�ba � Qj
i and  "QT���ai T

j
a � "Qj

i � �����!�

Operators Q and "Q are invertible� so we can rewrite �����!� in terms of an
associative operation X �Y �ij �� Xa

j Y
i
a or X �Y � X tY t�t� where t means

the transposition� as

T � Q��T��Q� � I and  "QT�� "Q��� � T � I � �������

where I is the identity with respect to the usual multiplication as well as to
the multiplication ��� Left and right inverses coincide� so

TQ "Q � Q "QT � �������

It follows from ������� that T�� also has an inverse with respect to ��
QTQ��� � T�� � I � �������

Note that ����
� can be rewritten as  �.��T
��
� � � T� � T� � T��

�
�.��� or

T��
� � �.�� � T� � T� � �.�� � T��

� � �������

since� if the matrix elements of an operator X commute with the matrix
elements of an operator Y then X � Y � Y X�

�� Covariance

As explained in the part � of this subsection� the operator �R provides a
consistent set of relations

xiyj � �Rij
kly

kxl � �������

The relations ������� are covariant under the following co�action of the
quantum group generators T i

j commute with xi��

xi � T i
jx

j � �����
�

��



and the same for yi�
We are going to build a quantum analog of the direct sum V � V �� so

we need� in addition to xi� another set of generators� xi� To mimic that the
generators xi describe a dual space� we require their transformation law to
be

xi � xjT
���ji �������

the same for yi��
A little later we will restrict ourselves to the case when �R has only two

eigenvalues� But already now we can partly analyze possible ordering rela�
tions� We have two �multiplets�� x � fxig and x � fxig� For the moment�
let S � EndV � V � be an arbitrary operator� Let us say that a matrix
element S��

�� is �ice� if either � � � and � � � or � � � and � � �� If all
non�vanishing matrix elements of S are ice then we have an ice matrix in
the sense of the subsection ���� We shall apply the same terminology to the
whole multiplets x and x� if x belongs to a multiplet A A can be  or �
and y belongs to a multiplet B then the parts in the ordered expression for
xy� which contain the same multiplets will be called �ice�� We shall see that
the ice part of ordering relations is strongly governed by the covariance�

We �x the ordering relations for xiyj to be as in ��������
In the ordered expression for xiyj the ice terms are ykxl�

xiyj � Ekl
ij ykxl � � � � � �������

where dots stand for terms with other structures of indices� Then the covari�
ance under the transformations ������� requires T��

� T��
� E�� � E��T

��
� T��

�

so� by rigidity� E�� is a polynomial in �R��� E�� � e �R����
In the ordered expression for xiyj we may have terms like ykxl and ykxl�

xiyj � Aik
jlykx

l �Bil
jky

kxl � � � � � �������

dots stand for terms with other structures of indices� Then the covariance
under the transformations �����
� and ������� requires

T�A��T
��
� � T��

� A��T� � �����!�

T�B��T
��
� � tr�B��T�P��T

��
� � � �������

�




Similarly� if� in the ordered expression for xiyj� we have terms like ykxl and
ykx

l�
xiy

j � Cjl
iky

kxl �Djk
il ykx

l � � � � � �������

where dots stand for terms with other structures of indices� then the covari�
ance under the transformations �����
� and ������� requires

tr�T
��
� P��T�C��� � tr�C��T�P��T

��
� � � �������

tr�T
��
� P��T�D��� � T��

� D��T� � �������

Due to rigidity of �R� it follows from eq� �����!� that A�� is a polynomial
in �R��� A�� � a �R����

Multiply ������� by �Ra� from the right and take tr�� The l�h�s� becomes
T�

"B�aT
��
� � where "B�a � tr�B��

�Ra��� The r�h�s� becomes

tr��B��T�P��T
��
�

�Ra�� � tr��B��T�P��
�Ra�T

��
� �

� tr��P��B��T�
�Ra�T

��
� �

	c

� tr��B��T�

�Ra�T
��
� P���

� tr��B��T�
�Ra�P��T

��
� �

tr�� tr�B��T�
�Ra�T

��
� �

	�����

� tr�B��T

��
a

�Ra�Ta� � T��
a

"B�aTa �

�������

We used� the cyclic property of the trace to move P��� it is indicated by c�
over ���� we took tr� it is indicated over ����� and we used eq� �������

Therefore� "B�a is� by rigidity of �R� a polynomial in �Ra�� tr�B��
�Ra�� �

b �Ra�� with some polynomial b� Multiplying by �.ba from the left and taking
tra� we �nd

B�� � tr� �.��b �R���� � �����
�

Similarly� multiplying ������� by �R�a from the left and taking tr�� we
�nd

T��
�

"Da�T� � Ta "Da�T
��
a � �������

where "Da� � tr� �R�aD���� Therefore� "Da� is a polynomial in �R�a� Thus�

D�� � tr�d �R��� �.��� �������

for some polynomial d�

��



Finally� multiply eq� ������� from the left by �R�a� from the right by �Rb�

and take tr�� to obtain

Ta "CabT
��
a � T��

b
"CabTb � �������

where "Cab � tr�� �R�aC��
�Rb��� Therefore� "Cab is a polynomial in �Rba� Thus�

C�� � tr�� �.��c �R��� �.��� �����!�

for some polynomial c�

�� Ansatz

We keep in mind that the multiplets x and x are associated to the
group GLN � For general N � the only invariant tensors with four indices are
the permutation and the identity in V � V � This motivates the following
Ansatz�

xiyj � �Rij
kly

kxl � �������

xiyj � Aik
jlykx

l �Bil
jky

kxl � �������

xiy
j � Cjl

iky
kxl �Djk

il ykx
l � �������

xiyj � Elk
ij ylxk � �������

Here

A�� � a �R��� � C�� � tr�� �.��c �R��� �.��� � B�� � tr� �.��b �R���� �

D�� � tr�d �R��� �.��� � E�� � e �R��� �������

with some polynomials a� b� c� d and e�
The original matrix �R is a matrix of the size N� � N�� where N is the

dimension of the space V � the range of indices of multiplets xi and xi� A
solution �RIJ

KL of the consistency conditions for the ordering relations ��������
������� is a matrix of a bigger size �N��� �N��� each of four indices of �R
runs from � to �N � The new index is the union of upper and lower indices
of the original multiplets� To remember it� we shall write� for the new index

��



I� I � k� for a value of the original index from the multiplet xk or I � k�
for a value of the original index from the multiplet xk� In this notation� the
nonzero matrix elements of �R are

�R
i�j�
k�l�

� �Rij
kl �

�R
i�j�
k�l�

� Aik
jl � �R

i�j�
k�l�

� Bil
jk �

�R
i�j�
k�l�

� Cjl
ik �

�R
i�j�
k�l�

� Djk
il � �R

i�j�
l�k�

� Elk
ij �

�����
�

We are looking for a skew�invertible �R� In the notation� as in �����
�� it
is easy to see that if A is zero then the matrix �RIJ

KL has a zero eigenvector
with respect to the skew multiplication� that is� a quantity vIK which satis�es

vIK �R
IJ
KL � !� one may take any v whose non�zero elements are only v

k�
i�

� so�

such �R cannot be skew invertible� In fact� this argument shows that the skew
invertibility of �R requires that the operator A is invertible with respect to
the usual multiplication�� Similarly� C must be invertible� The conditions

A and C are invertible �������

we will use in the process of solving the Yang�Baxter equation for �R�

	� Yang�Baxter equation for �R

As explained in the beginning of this subsection� the Yang�Baxter equa�
tion for �R we obtain by ordering in two di�erent ways expressions xAyBzC�
where the indices A� B and C can belong now to any of multiplets�  or �

Ordering xyz�

�R��A��A�� � A��A��
�R�� � �������

�R��B��A�� � P��tr�A��B��
�R��� � P��tr�A��D��P��B��� � �������

�R��B��
�R�� � tr�B��

�R��B��� � tr�P��B��A��C��� � �����!�

Ordering xyz�

P��tr�A��
�R��C��� � P��tr�B��B��P��D���

� tr�C��
�R��A���P�� � tr�D��D��P��B���P�� � �������

��



A��D��
�R�� � P��tr� �R��D��A��� � P��tr�B��A��P��D���� �������

C��B��
�R�� � P��tr� �R��B��C��� � P��tr�D��C��P��B��� � �������

Ordering xyz�

C��C��
�R�� � �R��C��C�� � �������

�R��D��C�� � P��tr�C��D��
�R��� � P��tr�C��B��P��D��� � �������

�R��D��
�R�� � tr�D��

�R��D��� � tr�C��A��P��D��� � �����
�

Exercise� Verify eqs� �������������
��

Equations� arising from ordering xyz� xyz and xyz� can be quick�
ly obtained by noticing that the system ��������������� is invariant under
a substitution x 	 x� y 	 y� �R 	 Et� A 	 C t and B 	 Dt� where t
stands for the transposition� We have�
for xyz�

A��A��E�� � E��A��A�� � �������

A��B��E�� � tr�E��B��A���P�� � tr�P��B��D��A���P�� � �������

E��B��E�� � tr�B��E��B��� � tr�P��B��C��A��� � �������

for xyz�

tr�A��E��C���P�� � tr�P��B��D��D���P��

� P��tr�C��E��A��� � P��tr�P��D��B��B��� � �����!�

E��D��A�� � tr�A��D��E���P�� � tr�P��D��A��B���P�� � �������

E��B��C�� � tr�C��B��E���P�� � tr�P��B��C��D���P�� � �������

for xyz�

E��C��C�� � C��C��E�� � �������

�!



C��D��E�� � tr�E��D��C���P�� � tr�P��D��B��C���P�� � �������

E��D��E�� � tr�D��E��D��� � tr�P��D��A��C��� � �������

Finally� ordering xyz implies the Yang�Baxter equation for E�

E��E��E�� � E��E��E�� � �����
�


� Specifying to the Hecke case

We shall solve the system �������������
� in the Hecke case � when the
matrix �R satis�es a quadratic equation �R� � � �R � �� Note that �R cannot
be proportional to a constant� it would contradict the skew invertibility�

As we have seen in the subsection ����� see eq� �����
��� in the Hecke
case the product Q "Q is proportional to a unity� Q "Q � r�I r corresponds
to the ribbon element in the quasi�triangular case�� Due to the assumption
A�� r �� !� Therefore� by ����
�� and ��������

�� �trQ� � � � �tr "Q� �� ! � �������

Because of Hecke condition� the polynomials in ������� contain only con�
stant and linear terms�

�� Block triangularity

The standard �R�matrix ��!��� has a following property�

�Rij
kl � ! if ji � kl � �������

where � is the lexicographic ordering i�e�� ji � kl when j � k or j � k and
i � l�� This means that the matrix P �R is lower triangular�

The standard �R�matrix ��!��� has also another triangularity property�
�Rij
kl � ! if ij 
 lk� this means that the matrix �RP is upper triangular�
For the ordering relations xiyj � �Rij

kl� the property ������� says that the
ordered expression for xiyj can contain only monomials which are lexico�
graphically not bigger than yjxi�

As a �rst step towards a solution of the system �������������
� in the
Hecke case� we shall prove that the relations ��������������� are �block

��



triangular�� say� block upper triangularity means that we de�ne an order
on the set S � f� g of multiplets x and x� x 
 x and then the ordered
expression for xIyJ � I�J � S� contains only monomials which are not bigger
than yJxI�

In the simple situation of eqs� ���������������� the block triangularity
means that either B � ! or D � !�

To prove the block triangularity� it is enough to consider two equations�
������� and �������� Eqn� ������� implies that A�� is proportional to either
�R�� or �R��

�� � We shall write it as A�� � �R�� � ��I�I�� where � � ! or �� The
coe�cient of proportionality is di�erent from ! due to ��������

The expressions ������� for B and D reduce in the Hecke case to

B�� � �I�Q� � P�� � �������

D�� � � "Q�I� � �P�� ����
!�

with some constants �� � � and ��
Substituting the expressions for A� B and D into �������� we obtain�

after using identities from the subsection ������ an equality

��� � �� � �� � ��tr "Q��� ��� � �����P��I�

���� �� � ���� �R��Q� � ��r�P��
�R��

��P��
�R�� � ����I�I�Q� � ! �

����
��

The tensors P��I�� �R��Q�� P��
�R��� P��

�R�� and I�I�Q�� entering eqn� ����
��
are linearly independent� to see it� multiply them from the right by �.�� and
take tr�� the tensors become P��

"Q�� P��Q�� P��P��� P��P�� and I�Q�
"Q�� which

are obviously independent� Thus� the coe�cients must vanish�

��� � �� � �� � ��tr "Q��� ��� � ���� � ! �

��� ��� ��� � ! � �� � ! � � � ! � ���� � ! �
����
��

For � � !� it follows from eqs� ����
�� that �� � !� � � ! and ���� �
!� which implies that either B or D is zero�

For � � �� it follows from eqs� ����
�� that �� � !� �� � �tr "Q� � !�
�� � ! and � � !� in view of ������� we conclude again that either B or
D is zero�

��



It is enough to consider the case B � !� another case can be reduced to
it by considering the opposite ordering if we read ��������������� from the
right to the left� as instructions to order yx to the form xy��

�� Solution

With B � ! the system �������������
� simpli�es drastically� can be fully
analyzed and one can write down all solutions� It is lengthy and we shall not
do it here�

It turns out that solutions which give rise to the orthogonal and sym�
plectic quantum groups are those for which the coe�cient � in ����
!� is
di�erent from !�

Proposition
 Let �R be a solution of the Yang�Baxter equation with �R� �
� �R � �� If �R satis�es assumptions A��A� then the ordering relations

xiyj � �Rij
kly

kxl � ����
��

xiyj � �Rkl
jiylxk � ����
��

xiyj � � �R���kilj ykx
l � ����
��

xiy
j � ��� �.uj

vi y
vxu � �yix

j � � "Qj
iykx

k � ����

�

where � is an arbitrary non�zero number� provide an invertible and skew
invertible solution �R of the Yang�Baxter equation when � � � � � � !�

If �R is of GLN �type then �R is of SO�N type for  � �q and of Sp�N type
for  � q���

�� SO�N � ��

Without going into details we shall describe the situation with the odd�
dimensional orthogonal groups�

One has to add a new generator x� to the multiplets x and x� The
matrix �R again turns out to be block�triangular� we will write the answer
for the order x 
 x� 
 x� Relations ����
��� ����
�� and ����
�� are the
same� Relation ����

� has to be replaced by

xiy
j � �.uj

vi y
vxu � �yix

j � � "Qj
iykx

k � q����� "Qj
iy

�x� � ����
��

��



Finally� when one of generators has an index !� the ordering relations are

xiy� � y�xi �

x�y� � y�x� � q����ylx
l �

xiy
� � y�xi � �yix

� � ����
��

x�yi � yix� � �y�xi �

x�yi � yix
� �

Proposition
 Under the same conditions as in the Proposition above� the
ordering relations ����
�������
��� ����
�� and ����
�� provide an invertible
and skew invertible solution �R of the Yang�Baxter equation�

If �R is of GLN �type then �R is of SO�N�� type�

Remarks� �� For a standard �R for GL� it was noted in ����� that the com�
mutation relations between coordinates and derivatives even or odd� can be
given by projectors of �R for Sp and SO� Our propositions in this subsection
generalize it to the construction of the whole �R�matrix for SO and Sp from
the �R�matrix for GL� which works in all cases� not only for the standard
deformation�

�� If one starts with �R corresponding to a supergroup GLM jN�� the
constructions of the propositions from this subsection produce Yang�Baxter
matrices for the quantum supergroups of OSp type�

� Real forms

In this subsection we explain how to classify real forms of RTT�algebras using
quantum spaces ���� �����

�The description of real forms of the dual algebra for a generic q is given in �
	�� Our
description is more precise� it requires only that q� �� � in SL case and q� �� � in the SO
and Sp cases

��



��� General linear quantum groups

We shall start with a standard Drinfeld�Jimbo �R matrix ��!��� for the quan�
tum group GLqN�� We shall assume that q� �� ��

Exercise� Show that the �R�matrix ��!��� satis�es the Yang�Baxter equation�
Show that the spectral decomposition of �R is �R � qS � q��A S and A are

projectors� S� � S� A� � A� with rkS � N	N��

�

and rkA � N	N��

�

�

Let � be an involution on the RTT�algebra� that is� an antilinear opera�
tion� satisfying �ab� � �b� � a� and � � �� �� � � � �� Then �xi form
a comodule for the SLqN�� There are two comodules of dimension N � one
is generated by xi� another one is generated by xi� So we may have two
di�erent types of conjugations� � can map Al

� to itself or to Ar
��

We shall consider in some details the �rst possibility� So� we assume

�xi � J i
jx

j � ������

Since the matrix T coacts on the vector x� we have �Tx� � JTx� on the
other hand� �Tx�i � �T i

jx
j� � �xj � T i

j � �T i
j � xj � �T i

j J
j
kx

k we used
that T i

j commutes with xk�� It follows then that

�T � JTJ�� � ������

Conjugate now the relation �RT�T� � T�T�
�R�

�R � T� � T� � �T� � T�
�R

here is the complex conjugate�� or

�R�� � T� � T� � �T� � T�
�R�� �

Substituting �T from ������ we �nd

&T�T� � T�T�& � ������

where & � J��� J���
�R��J�J��

Proposition
 Let �R be the standard SLqN� �R�matrix ��!���� If an oper�
ator & � &�� satis�es an equality

�&� T�T�� � ! � ������

��



then & is a polynomial in �R�

Sketch of the proof� Take a ��dimensional representation for T � T i
j � �j�

i
j

with some commuting variables �i� Then it follows from ������ that & is of
�ice� type� that is� &ij

kl can be di�erent from zero only if i � k� j � l or i � l�
j � k�

Take now another representation� T i
j �

a
b � �Rai

jb� Writing ������ in this
representation with an ice &� one arrives at the statement of the proposition�
�

�R satis�es the Yang�Baxter equation YBe� � �R�� satis�es YBe � �R��

satis�es YBe � & � J��� J���
�R��J�J� satis�es YBe�

The following proposition is easy�

Proposition
 A non�constant polynomial in �R which satis�es YBe is either
� �R or � �R�� for some constant ��

The operator �R�� � P �RP P is the permutation� has the same spectrum

as �R� Therefore� the spectrum of & � J��� J���
�R��J�J� contains an eigenvalue

q with the multiplicity N	N��

�

and the eigenvalue �q��� with the multiplicity
N	N��


�
�

According to the Proposition� we have to consider two possibilities� & �
� �R or & � � �R���

Comparing spectra� we �nd that if & � � �R then q � �q and �q�� �
��q��� Therefore� �� � � and q � �q�

Similarly� if & � � �R�� then q � �q�� and �q�� � ��q� Therefore�
�� � � and q � �q���

We have four cases� Let us see which equations we have to solve� For

example� for q � q we have & � �R� for q real� �R � �R and we have therefore
equations �R��J�J� � J�J� �R� This is a system of quadratic equations and it
turns out that for the �R�matrix ��!��� one can completely solve the system�
One can solve the corresponding system in the other three cases as well�

For the other type of conjugation when � of a quantum vector is a quan�
tum covector�� the operator J has two lower indices� �xi � Jijx

j� Again at
the end one arrives at a system of quadratic equations for j which admits a
complete solution�

The last step is to impose the condition that the square of the conjugation

�




is the identity� �� � Id� this produces a further restriction on the operator J �
The �nal result is presented below� We use a notation 0c�� � � � � cN � for

an antidiagonal matrix

�
BBBBBB�

c�
c�

���
cN��

cN


CCCCCCA�

In the formulation of the theorem below� a letter �a� appears sometimes
in the name of a real form� The letter �a� stands for �alternative�� it signi�es
that there are several real forms having the same classical limit�

Theorem
 i� There are no real forms in the nonquasiclassical cases q �
�q��� all real forms admit the classical limit�

ii� For q � q�� the real forms are�

SLqN�R�� here J � ��

SUa
q N � �N	��� �N	���� Jij � �N��

i�j �

iii� For q � q the real forms are�

SLa
qN�R�� J

i
j � �N��

i�j �

SU�
q �n�� N � �n� J � antidiag�� � � � � �� �z �

n times

���� � � � ���� �z �
n times

��

SUq��� � � � � �N�� Jij � �i�
j
i � �i � ���

In the last case the sequences f�ig and f��ig produce equivalent real
forms� What is more interesting is that the sequences f�ig and f��ig where
��i � �i� � where i� � N � � � i produce equivalent real forms as well� An
explanation� classically� there is an outer automorphism T � T���t of the
algebra� corresponding to the symmetry T
 of the Dynkin diagram Al� For
the quantum T � we have T���ikT

k
j � �ij � T i

kT
���kj but T

���ki T
j
k �� �ji � The

correct version is� T���ki QTQ
���jk � �ji where the numerical matrix Q is

de�ned by ������� we remind that the standard �R�matrix ��!��� is skew�
invertible� see ��������� It is� up to a factor� the same Q which cyclically
rotated the E�tensor�

Set � T i
j � � T���j

�

i� �

�see eqs� ���
���� ���
��� and ���
�����

��



Proposition
 The map � preserves the RTT�relations�

The proof follows from the fact that �RQ�Q� � Q�Q�
�R and �Ri�j�

k�l� � �Rji
lk

for the standard �R� Moreover� � T���jk� � Q���k
�

v T
v
uQ

u
j�� The e�ect of � on

the sequence f�ig is exactly f�ig � f��ig�

��� Orthogonal and symplectic quantum groups

I shall very shortly list the real forms for orthogonal and symplectic quantum
groups�

The answer below is written in the basis� in which the ordering rela�
tions for the quantum planes have the form as in ����
�������

�� with
� � �� for SOq�N� and Spq�N�� or ����
�������
�� and ����
�������
��
for SOq�N � ���

Let B �

�
BBBBBBBBBBBBB�

�
���

�
� �
� �

�
���

�


CCCCCCCCCCCCCA

the nondiagonal � by � block is

in the middle�� in the formulation of the theorem below� a letter �b� in the
name of a real form signi�es that the matrix J involves the matrix B�

Theorem
 i� Again� all real forms admit the classical limit�

ii� For q � q�� the real forms are�

SOq�N	��� N � �N	���� J � ��

SOb
qn � �� n� ��� N � �n� J � B�

SpqN�R�� J � ��

iii� For q � q the real forms are �i � ����
SOq��� � � � � �N �� J � 0��� � � � � �N � with J t � J �

SOb
q��� � � � � �N �� J � B0��� � � � � �N � with �i� � �i�

SO�
q��� � � � � �N �� J � 0��� � � � � �N � with J t � �J �

USpq��� � � � � �N �� J � 0��� � � � � �N � with J t � J �

��



Spq��� � � � � �N �R�� J � 0��� � � � � �N � with J t � �J �
I shall end the lectures by a comparison with the classical Cartan� way

of classifying the real forms see� eg� ��
���
�� One proves that there exists a unique compact real form u� denote the

corresponding � by � �
�� For an arbitrary real form � one proves that there exists an equivalent

to it real form "� such that the automorphism � � "�� is involutive� �� � �� For
a description of involutive automorphisms one should analyze each Cartan
data concretely�

�� The automorphism � acts on u� under this action� u decomposes
according to the eigenvalues of �� u � u��u��� The real form corresponding
to "� is u� �

p��u���
In the classi�cation of real forms of quantum groups given above� these

steps become hidden because quantum spaces are more �rigid� they admit
less automorphisms��
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