
Several Complex Variables

A.A. Glutsyuk

May 15, 2024

HSE, spring semester, 2023/2024

Contents

1 Holomorphic functions of several complex variables. Cauchy–
Riemann equations, Cauchy formula, Taylor series 3

2 Convergence of power series. Equivalent definition of holo-
morphic function 8

3 Analytic extension. Erasing singularities. Hartogs Theo-
rem 13

4 Implicit Function and Constant Rank Theorems. Complex
manifolds. Extension theorems for functions on manifolds 17
4.1 Implicit Function and Constant Rank Theorems . . . . . . . 17
4.2 Complex manifolds and extension of functions . . . . . . . . . 19

5 Analytic sets 20
5.1 Introduction and main properties . . . . . . . . . . . . . . . . 20
5.2 Extension of holomorphic functions on complements to ana-

lytic subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 The dimension and proper maps of analytic sets. Remmert

Proper Mapping Theorem . . . . . . . . . . . . . . . . . . . . 23
5.4 Decomposition into irreducible components . . . . . . . . . . 24
5.5 Weierstrass polynomials and Preparatory Theorem . . . . . . 25
5.6 Local rings. Factorization of holomorphic functions as prod-

ucts of irreducible ones . . . . . . . . . . . . . . . . . . . . . . 27
5.7 Zero locus as a ramified covering. Geometric factorization

and irreducibility criterion . . . . . . . . . . . . . . . . . . . . 30

1



5.8 Zero loci of functions of two variables and Newton diagrams . 34
5.8.1 Zero loci of irreducible germs as parametrized curves . 34
5.8.2 Newton diagrams and irreducible factors . . . . . . . . 37

6 Generalized Maximum Principle. Automorphisms 41
6.1 Generalized Maximum Principle and Schwarz Lemma . . . . 41
6.2 Automorphisms of polydisk . . . . . . . . . . . . . . . . . . . 44
6.3 Cauchy inequality. Henri Cartan’s theorem on automorphisms

tangent to identity . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Automorphisms of ball . . . . . . . . . . . . . . . . . . . . . . 47
6.5 Introduction to complex dynamics: linearization theorem in

dimension one . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6 Linearization theorem in dimension two . . . . . . . . . . . . 50
6.7 Polynomial automorphisms of C2. Fatou–Bieberbach domains 54

7 Domains of holomorphy. Holomorphic convexity. Pseudo-
convexity. Riemann domains. 57
7.1 Domains of holomorphy and holomorphic convexity. Oka’s

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Material of seminar. Logarithmic convexity characterization

of convergence domains of power series . . . . . . . . . . . . . 62
7.3 End of proof of Oka’s Theorem: holomorphic convexity im-

plies being domain of holomorphy . . . . . . . . . . . . . . . . 63
7.4 Continuity Principle. Levi convexity . . . . . . . . . . . . . . 64
7.5 Material of seminar . . . . . . . . . . . . . . . . . . . . . . . . 68
7.6 Levi form. Necessary and sufficient Levi convexity conditions

for domains with C2-smooth boundary . . . . . . . . . . . . . 69
7.7 Subharmonic functions and L-convexity . . . . . . . . . . . . 74

8 Stein manifolds 79
8.1 Stein manifolds: definition and main properties . . . . . . . . 79

9 Dolbeault cohomology 80
9.1 Basic definitions and ∂̄-Poincaré Lemma . . . . . . . . . . . . 80
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1 Holomorphic functions of several complex vari-
ables. Cauchy–Riemann equations, Cauchy for-
mula, Taylor series

Definition 1.1 Let Ω ⊂ Cn be an open subset. Recall that a function f :
Ω→ C is said to be (R-)differentiable at a point p ∈ Ω, if it is differentiable
there as a function of real variables: there exists an R-linear mapping df(p) :
TpCn ' R2n → TpC ' R2 such that

f(z)− f(p) = df(p)(z − p) + o(z − p), as z → p.

A function f is said to be C-differentiable at a point p, if it is differentiable
there and its differential df(p) is C-linear. A function f is said to be holo-
morphic on Ω, if it is C-differentiable at each point x0 ∈ Ω. A function f is
said to be holomorphic at a point x0 ∈ Cn, if it is C-differentiable in some
its neighborhood. A holomorphic mapping F = (F1, . . . , Fm) : U → V ,
U ⊂ Cn, V ⊂ Cm is defined in literally the same way: it is holomorphic, if
and only if so are its components F1, . . . , Fm.

Holomorphicity of a differentiable function is equivalent to Cauchy–
Riemann Equations. To write them, let us first recall the following prepara-
tory linear algebra.

Let C be equipped with a complex coordinate z = x+ iy. Each R-linear
operator L : C→ C can be written in the two following forms

L = αx+ βy = Az +Bz̄; α, β,A,B ∈ C.

The expression of the coefficients A and B via α and β is obtained by the
substitutions

x =
1

2
(z + z̄), y =

1

2i
(z − z̄) :

L = αx+ βy =
α

2
(z + z̄) +

β

2i
(z − z̄) = Az +Bz̄,

A =
1

2
(α− iβ), B =

1

2
(α+ iβ̄). (1.1)

Let f : U → C be a differentiable mapping of a domain U ⊂ C. For
every p ∈ U the differential df(p) : TpC ' C → Tf(p)C ' C is an R-linear
map C→ C. One has

df =
∂f

∂z
dz +

∂f

∂z̄
dz;

∂f

∂z
=

1

2
(
∂f

∂x
− i∂f

∂y
),
∂f

∂z̄
=

1

2
(
∂f

∂x
+ i

∂f

∂y
), (1.2)
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which follows from formula (1.1) applied to the differential L = df(p), taking
into account that in our case

α =
∂f

∂x
, β =

∂f

∂y
.

Proposition 1.2 (Cauchy–Riemann Equations). A differentiable function
f(z1, . . . , zn) on a domain in Cn is holomorphic, if and only if

∂f

∂z̄j
≡ 0 for every j = 1, . . . , n. (1.3)

The latter equation number j is equivalent to the system of equations{
∂ Re f
∂xj

= ∂ Im f
∂yj

∂ Re f
∂yj

= −∂ Im f
∂xj

.
(1.4)

Proof The tangent space TpCn is the direct sum of complex “coordinate
lines” parallel to the coordinate axes. Thus, the C-linearity of the differential
df(p) is equivalent to the C-linearity of its restrictions to all the coordinate
lines. The latter is equivalent to (1.3). Equivalence of equation (1.3) and
system (1.4) follows from (1.2). This proves the proposition. 2

Example 1.3 Holomorphicity is preserved under arithmetic combinations
and compositions. In particular, polynomials and rational functions and in
general, all the elementary functions (restricted to their appropriate defini-
tion domains) are holomorphic.

Remark 1.4 In the case, when n = 1 the above definition coincides with
the classical definition of holomorphic function of one complex variable. If
a function f is holomorphic in Ω, then for every complex line L ⊂ Cn the
restriction f |L∩Ω is holomorphic as a function of one variable. The next Big
Hartogs’ Theorem implies that the converse is also true.

Theorem 1.5 (Hartogs). A function f(z1, . . . , zn) is holomorphic on a do-
main Ω = Ω1×· · ·×Ωn ⊂ Cn, if and only if it is separately holomorphic:
for every j = 1, . . . , n and every given collection of points zs ∈ Ωs, s 6= j,
the function g(z) = f(z1, . . . , zj−1, z, zj+1, . . . , zn) is holomorphic on Ωj.

Remark 1.6 The nontrivial part of the theorem says that if a function is
separately holomorphic, then it is holomorphic as a function of several vari-
ables. Under the additional assumption that f is differentiable, this state-
ment follows immediately from Proposition 1.2. We will not prove Theorem
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1.5 in full generality. We will prove its weaker version under continuity
assumption (Osgood Lemma).

Holomorphic functions in several variables share the basic properties of
holomorphic functions in one variable: existence of converging Taylor series,
uniqueness of analytic extension, openness, Maximum Principle, Liouville
Theorem. At the same time we will see that the following new phenomena
hold for holomorphic functions in several complex variables, which are in
contrast with the case of one variable:

- no isolated singularities;
- erasing compact singularities: holomorphic functions on a complement

of a domain V ⊂ Cn to a compact subset K b V extend holomorphically to
all of V .

Everywhere below for every δ > 0 and z ∈ C we denote

Dδ(z) = {|w − z| < δ} ⊂ C; Dδ = Dδ(0).

The corresponding balls in Cn of radius δ will be denoted by Bδ(z) and Bδ
respectively. For every r = (r1, . . . , rn) ∈ Rn+, z = (z1, . . . , zn) ∈ Cn the
polydisk of multiradius r centered at z is the product of disks of radii rj ,
which we will denote by

∆r(z) =
∏
j

Drj (zj) = {w = (w1, . . . , wn) ∈ Cn | |wj−zj | < rj}; ∆r = ∆r(0).

For δ > 0 we denote ∆δ(z) = ∆(δ,...,δ)(z), ∆δ = ∆δ(0). In the case, when we
would like to specify the dimension of the ambient space of the polydisk, we
will write ∆n

r , ∆n
δ (z) etc.

The next theorem generalizes Cauchy formula for holomorphic functions
in one variable.

Theorem 1.7 (Multidimensional Cauchy formula). Let f : ∆r → C be a
continuous function that is separately holomorphic on ∆r: holomorphic
in each variable zj ∈ Drj , j = 1, . . . , n. (In particular, this holds for every
function holomorphic on ∆r and continuous on its closure). Then for every
z = (z1, . . . , zn) ∈ ∆r one has

f(z) =
1

(2πi)n

∮
|ζ1|=r1

· · ·
∮
|ζn|=rn

f(ζ)∏n
j=1(ζj − zj)

dζ1 . . . dζn. (1.5)

Remark 1.8 Let g(ζ) denote the sub-integral function in the latter right-
hand side. The multiple integral in (1.5) is independent of integration order
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(Fubini’s theorem and continuity of the function g(ζ)). It is equal to the
integral of the complex-valued differential n-form g(ζ)dζ1 ∧ · · · ∧ dζn on
the n-torus Tn =

∏n
j=1 S

1
j , S1

j = {|ζj | = rj}, oriented as a product of
positively (i.e., counterclockwise) oriented circles. That is, an orienting basis
v1, . . . , vn ∈ TζTn is formed by vectors vj ∈ TζjS1

j oriented counterclockwise.

Proof It suffices to prove the statement of the theorem in the case, when
f is holomorphic in each variable on a domain containing the closed poly-
disk ∆r: the general case is reduced to it via scaling the function f to
fε(z) = f(εz), 0 < ε < 1 (which is holomorphic in each variable on ∆r) and
passing to the limit under the integral, as ε → 1. We prove formula (1.5)
by induction in n.

Induction base: for n = 1 this is the classical Cauchy formula for one
variable.

Induction step. Let formula (1.5) be proved for the given n = k. Let us
prove it for n = k + 1. For every w = (w1, . . . , wk) ∈ Ck set

fw(t) = f(w1, . . . , wk, t).

For every fixed zk+1 ∈ Drk+1
the function g(w1, . . . , wk) = fw(zk+1) is holo-

morphic on ∆(r1,...,rk). Hence,

f(z1, . . . , zk+1) =
1

(2πi)k

∮
|ζ1|=r1

· · ·
∮
|ζk|=rk

fζ(zk+1)∏k
j=1(ζj − zj)

dζ1 . . . dζk, (1.6)

by the induction hypothesis. The function fζ(t) being holomorphic in t ∈
Drk+1

for every ζ = (ζ1, . . . , ζk), it is expressed by Cauchy Formula

fζ(t) =
1

2πi

∮
|ζk+1|=rk+1

fζ(ζk+1)

ζk+1 − t
dζk+1 for every t ∈ Drk+1

.

Substituting the latter formula with t = zk+1 to (1.6) yields (1.5), by conti-
nuity and Fubini Theorem. 2

Lemma 1.9 (Osgood). Every continuous function on a domain in Cn that
is holomorphic in each individual variable is holomorphic.

Proof It sufficed to prove the statement of the lemma for a function con-
tinuous on a closed polydisk ∆r. Then Multidimensional Cauchy Formula
(1.5) holds, and its subintegral expression is a continuous family of rational
functions in z ∈ ∆r. Therefore, the subintegral expressions are holomorphic
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on ∆r. They are uniformly bounded and continuous together with deriva-
tives on compact subsets in ∆r. Therefore, the integral is C1-smooth and its
partial derivatives are equal to the integrals of partial derivatives in z of the
subintegral expression (here one can differentiate the integral by the above
boundedness and continuity statements). It satisfies Cauchy–Riemann equa-
tions, as do the subintegral functions, and hence, is holomorphic. The lemma
is proved. 2

Proposition 1.10 Each holomorphic function is C∞-smooth. If f is holo-
morphic on a polydisk ∆r and continuous on its closure, then its derivatives
are given by the formulas

∂kf(z)

∂zk11 . . . ∂zknn
=
k1! . . . kn!

(2πi)n

∮
|ζ1|=r1

· · ·
∮
|ζn|=rn

f(ζ1, . . . , ζn)∏n
j=1(ζj − zj)kj+1

dζn . . . dζ1.

(1.7)

Proof In the multidimensional Cauchy formula the subintegral expression
a non-vanishing rational function. It is holomorphic, thus its ∂

∂z̄j
-derivatives

vanish. It is differentiable infinitely many times, and its k-th derivatives, k =
(k1, . . . , kn), are equal to k1!...kn!f(ζ1,...,ζn)

(ζ1−z1)k1+1...(ζn−zn)kn+1 . This together with Cauchy

formula and uniform boundedness of every latter derivative, as |ζj | = rj and
z varies on a compact subset in ∆r, implies that the corresponding derivative
of the Cauchy integral is the integral of the derivative. This proves (1.7).
The C∞-smoothness statement then follows immediately. 2

Theorem 1.11 Let a sequence of holomorphic functions on a domain Ω ⊂
Cn converge uniformly on compact subsets. Then its limit is holomorphic
on Ω.

Proof Let fm be our converging functions. Let us restrict them to a closed
polydisk ∆ ⊂ Ω and write multidimensional Cauchy formula for them on
the polydisk ∆. For each z ∈ ∆ its left-hand side fm(z) is a converging
sequence, and so is the Cauchy integral in the right-hand side, by uniform
convergence of fm(ζ1, . . . , ζn). Therefore, the limit function satisfies the
Cauchy formula as well. For every continuous function f(ζ1, . . . , ζn) the
corresponding Cauchy integral is holomorphic in z ∈ ∆. Indeed, so is the
subintegral function (which is rational in z). We can permute integration
in ζ and differentiation in z, since the module of the derivative of the latter
rational function is uniformly bounded on each compact subset in ∆r. In
particular, the bar-derivative in z of the integral vanishes, as does that of
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the subintegral expression. This together with the Cauchy formula for the
limit function implies holomorphicity of the limit. The theorem is proved.

2

Set

Z≥0 = N ∪ {0}.

Theorem 1.12 Every function f holomorphic at 0 ∈ Cn is a sum of power
series converging to f uniformly on a neighborhood of 0:

f(z) =
∑
k∈Zn≥0

ckz
k; ck ∈ C, zk = zk11 . . . zknn , c0 = f(0). (1.8)

Proof Fix a δ > 0 such that f is holomorphic on the closed polydisk
∆δ = ∆(δ,...,δ). Let us show that the right-hand side of the Cauchy formula
written in the same polydisk is a sum of power series converging on ∆δ. For
every ζj and zj with |zj | < δ = |ζj | one has

1

ζj − zj
= ζ−1

j

1

1− zj
ζj

=

+∞∑
l=0

ζ−l−1
j zlj . (1.9)

This series converges absolutely uniformly on every disk |zj | ≤ δ′ with δ′ < δ.
Hence, the product of the latter series for all j = 1, . . . , n also absolutely
uniformly converges to 1∏

j(ζj−zj)
on ∆δ′ . Substituting formulas (1.9) for all

j to (1.5) together with permutability of integration and series summation
(ensured by absolute uniform convergence of subintegral series and uniform
boundedness of the function on ∂∆) yields (1.8) with

ck =
1

(2πi)n

∮
|ζn|=δ

· · ·
∮
|ζ1|=δ

f(ζ)

ζ−k1−1
1 . . . ζ−kn−1

n

dζ1 . . . dζn. (1.10)

Substituting k = 0 yields c0 = f(0), by (1.5). 2

2 Convergence of power series. Equivalent defini-
tion of holomorphic function

Here we study convergence of power series
∑

k ckz
k and present a higher-

dimensional analogue of convergence radius theorem from the theory of func-
tions of one complex variable.
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Lemma 2.1 (Abel). Consider a power series
∑

k∈Zn≥0
ckz

k. Let its terms

ckz
k at a given point z = (z1, . . . , zn) ∈ Cn be uniformly bounded, set rj =

|zj |, r = (r1, . . . , rn). Let rj > 0 for all j. Then the series converges
uniformly on compact subsets in the polydisk ∆r.

In the proof of the lemma and in what follows we will use the following
convention.

Convention 2.2 For every δ, r ∈ Rn≥0 we say that

δ < r (δ ≤ r), if δj < rj (respectively, δj ≤ rj) for every j = 1, . . . , n.

Proof of Lemma 2.1. Fix some δ = (δ1, . . . , δn) with δj > 0, δ < r. It
suffices to show that

∑
|ck|δk <∞. Indeed, set

νj =
δj
rj
< 1, C = sup

k
|ckrk| < +∞.

Then |ck|δk ≤ Cνk. But

∑
k

νk =
n∏
j=1

(
+∞∑
s=0

νsj ) =
1∏

j(1− νj)
< +∞.

Therefore, the series
∑

k |ck|δk is majorated by a converging series C
∑

k ν
k,

and hence, converges. The lemma is proved. 2

Definition 2.3 The convergence domain of a power series
∑

k∈Zn≥0
ckz

k is

the interior of the set of those points z ∈ Cn where it converges.

Consider the torus Tn = S1×· · ·×S1 identified with the product of unit
circles in C. Its points will be identified with collections t = (t1, . . . , tn),
|t1| = · · · = |tn| = 1, thus, tj = eiψj . It acts on Cn by coordinatewise
rotations:

Tn : Cn → Cn, t(z1, . . . , zn) = (t1z1, . . . , tnzn).

Corollary 2.4 The convergence domain of a series
∑

k ckz
k is a union of

polydisks centered at the origin. It is invariant under the above torus action.

Proof Given a power series, let Ω denote its convergence domain. Given a
point z = (z1, . . . , zn) ∈ Ω, let us construct a polydisk ∆r ⊂ D containing z.
For every λ > 1 close enough to 1 (dependently on z) one has w := λz ∈ Ω,
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by definition. Fix the above λ and w. Set rj = |wj | = λ|zj | > |zj |, r =
(r1, . . . , rn). The sequence ckr

k is uniformly bounded, by the convergence
of the series

∑
k ckw

k. Therefore, ∆r ⊂ Ω (Abel’s Lemma 2.1) and z ∈ ∆r,
by construction. The first statement of the corollary is proved. Its second
statement follows from the first one and the invariance of each polydisk
centered at 0 under the torus action. The corollary is proved. 2

Proposition 2.5 Each power series converges uniformly on compact sub-
sets in its convergence domain Ω.

Proof Each point z ∈ Ω is contained in two homothetic polydisks: a
polydisk ∆r ⊂ Ω and in smaller homothetic polydisk ∆r′ , ∆r′ ⊂ ∆r ⊂ ∆r,
r′ = λr, 0 < λ < 1. The series converges uniformly on ∆r′ , since it converges
at the point r and by Abel’s Lemma. Every compact subset K b Ω can be
covered by a finite number of the above uniform convergence polydisks ∆r′ .
This implies uniform convergence on K. The proposition is proved. 2

Example 2.6 The convergence domain of the series
∑

k≥0 z
k
1 in two vari-

ables (z1, z2) is the cylinder |z1| < 1. The convergence domain of the series∑
zk11 zk22 is the unit bidisk ∆1,1. The convergence domain of the series∑
(z1z2)k is the set {|z1z2| < 1}.

Let us recall that the convergence radius r of a power series
∑

k ckz
k

in one variable is given by the classical Cauchy-Hadamard formula r =

(limk→∞c
1
k
k )−1, or equivalently,

limk→∞(ckr
k)

1
k = 1.

The next proposition generalizes this formula to several variables. To state
it, let us introduce the following notation. Consider the mapping

R : Cn → Rn≥0, R(z) := (|z1|, . . . , |zn|).

It can be viewed as the map of the space Cn to its quotient Rn≥0 by the torus
action.

Proposition 2.7 Consider a given series
∑

k ckz
k in variable z = (z1, . . . , zn).

Let Ω denote its convergence domain. For every r = (r1, . . . , rn) ∈ Rn≥0 set

φ(r) := limk→∞(|ck|rk)
1
|k| , rk = rk11 . . . rknn . (2.1)
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Let z = (z1, . . . , zn) ∈ Cn be a point with zj 6= 0 for all j.
1) One has z ∈ Ω, if and only if φ(R(z)) < 1.
2) One has z ∈ ∂Ω, if and only if φ(R(z)) = 1.

In the proof of the proposition we use following homogeneity and conti-
nuity properties of the upper limit function φ(r).

Proposition 2.8 The function φ(r) has the two following properties:

1) homogeneity : φ(λr) = λφ(r) for every λ > 0. (2.2)

2) monotonicity : φ(r) ≥ φ(r′) whenever r ≥ r′.

Proof The proposition follows from definition. 2

Proposition 2.9 Let a non-negative-valued function φ(r) be defined on a
non-empty cone (i.e., homothety-invariant subset) K ⊂ Rn+ and have the
above properties 1) and 2). Then it is continuous on K. In particular,
for every series

∑
k ckz

k for which the corresponding function φ(r) is well-
defined for at least one r ∈ Rn+, φ(r) is continuous on its definition domain.

Proof Fix an r ∈ K and a small ε > 0. Then the subset of those r′ that
satisfy the inequality

(1− ε)r ≤ r′ ≤ (1 + ε)r

contains the intersection with K of a neighborhood of the point r: the
rectangular parallelepiped

∏n
j=1[rj(1 − ε), rj(1 + ε)]. The function φ takes

values εφ(r)-close to φ(r) there, since φ((1±ε)r) = (1±ε)φ(r) (homogeneity)
and by monotonicity. Therefore, it is continuous at r. 2

Proof of Proposition 2.7. Let z ∈ Cn be a point with zj 6= 0 for all
j. Let us prove the first statement of Proposition 2.7: z ∈ Ω if and only
if φ(R(z)) < 1. Indeed, set r = R(z). Let z ∈ Ω. Then λz ∈ Ω for
some λ > 1 (openness; let us fix this λ). Hence, for every λ′ ∈ (1, λ) the
series

∑
k ck(λ

′z)k converges, and thus, its terms are uniformly bounded in
k. This implies that the upper limit of the |k|-th roots of its terms is no
greater than 1. Thus, φ(r) ≤ (λ′)−1 < 1. Conversely, let φ(r) < 1. Fix a
λ > 1 such that φ(r) < λ−1. Then φ(λr) = λφ(r) < 1. In other words,

limk→∞(|ck|(λr)k)
1
|k| < 1. This implies that the expression under limit is

less than one, thus |ck|(λr)k < 1, whenever |k| is large enough. Therefore,
∆λr ⊂ Ω, by Abel’s Lemma, and thus, z ∈ ∆λr ⊂ Ω. This proves Statement
1) of Proposition 2.7.
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Let us prove Statement 2). Let r = R(z) and let φ(r) = 1. Then for
every λ ∈ (0, 1) one has φ(λr) < 1, and hence, ∆λr ⊂ Ω (Statement 1)).
This implies that z ∈ Ω. But z /∈ Ω, since φ(R(z)) = 1 and by Statement
1). Hence, z ∈ ∂Ω. Conversely, let z ∈ ∂Ω and R(z) ∈ Rn+. Then z is
the limit of a convergent sequence wm → z, wm ∈ Ω, R(wm) ∈ Rn+, and
φ(R(wm)) < 1, by Statement 1). Therefore, φ(R(z)) ≤ 1, by continuity. We
know that φ(R(z)) cannot be less than 1, since z /∈ Ω and by Statement 1).
Therefore, φ(R(z)) = 1. Proposition 2.7 is proved. 2

Remark 2.10 All the above statements on power series remain valid for
power series

∑
k ck(z − p)k with arbitrary p ∈ Cn: the convergence domain

is a union of polydisks centered at p, etc.

The higher derivatives ∂lf
∂zl

, ∂k+lf
∂zk∂z̄l

of function of one variable and the
higher derivatives

∂k+lf

∂zk∂z̄l
=

∂k+lf

∂zk11 . . . ∂zknn ∂z̄l11 . . . ∂z̄lnn
, k, l ∈ Z≥0

of a function of n complex variables are defined by subsequent differenti-
ations. They are independent on the choice of order of differentiations (if
the order of smoothness of the function is no less than the number of dif-
ferentiations). This follows from the general fact that every two differential
operators with constant coefficients commute.

Example 2.11 Let f(z) = zs11 . . . zsnn . Then

∂k+lf

∂zk11 . . . ∂zknn ∂z̄l11 . . . ∂z̄lnn
= 0 whenever l 6= 0;

∂kf

∂zk
= 0 whenever kj > sj for a certain j;

∂kf

∂zk
=

n∏
j=1

sj !

(sj − kj)!
zs−k, whenever kj ≤ sj for all j.

Proposition 2.12 Let a power series f(z) =
∑

k ckz
k have a non-empty

convergence domain. Then its sum f(z) is holomorphic there and

c0 = f(0), ck =
1

k1! . . . kn!

∂|k|f

∂zk
(p), (2.3)
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Proof Without loss of generality we consider that p = 0. The convergence
domain is a union of convergence polydisks. Fix a convergence polydisk
∆r and let us prove the above regularity statements in ∆r. We claim that
each derivative (of any order) of the series

∑
k ckz

k converges uniformly on
compact subsets in ∆r. Let φ(r), φ1(r) denote respectively the upper limits
(2.1) corresponding to the initial series and its derivative

∂

∂z1
(
∑
k

ckz
k) =

∑
k

k1z
−1
1 ckz

k.

One has

φ1(r) = limk→∞((|k1r
−1
1 ck|rk)

1
|k|−1 ≤ limk→∞(|ck|rk)

1
|k|−1 = φ(r) ≤ 1.

Thus, the above derivative series converges uniformly on compact subsets in
∆r, by Proposition 2.7. For higher derivatives the proof is analogous: the
l-th derivation yields a new multiplier polynomial in k of fixed degree |l|,
and its contribution to the above upper limit cancels out after taking a root
of order |k|, as in the above inequality. This implies infinite differentiability
of the function f , and each its partial derivative is equal to the sum of the
corresponding derivative series. In particular, ∂f

∂z̄j
= 0, since this holds for

each term of the power series. Hence, f is holomorphic. The value ∂|k|f
∂zk

(0) is
equal to the free term of the corresponding derivative series, i.e., k1! . . . kn!ck.
This proves (2.3) and the proposition. 2

Corollary 2.13 A function f on a domain V ⊂ Cn is holomorphic, if and
only if each point p ∈ V has a neighborhood where f is a sum of a converging
power series

∑
k ck(z − p)k. The coefficients ck are given by formula (2.3).

The corollary follows from the above proposition and Theorem 1.12.

3 Analytic extension. Erasing singularities. Har-
togs Theorem

Theorem 3.1 (Uniqueness of analytic extension). Every two holomorphic
functions on a connected domain Ω ⊂ Cn that are equal on an open subset
coincide on all of Ω.

Proof It is sufficient to show that if a holomorphic function f on a con-
nected domain Ω vanishes on some open subset V ⊂ Ω, then f ≡ 0 on all of

13



Ω. To do this, let us consider the subset

K = ∩k∈(Z≥0)n{
∂|k|f

∂zk
= 0} ⊂ Ω : K ⊃ V.

One has f |K ≡ 0, since the latter intersection includes k = 0. The subset
K ⊂ Ω is closed, being an infinite intersection of closed subsets, since f ∈
C∞(Ω) (Corollary 2.13). The set K is open. Indeed, at each point p ∈ K the
function f has vanishing Taylor series coefficients, by definition and formula
(2.3). Hence, f ≡ 0 on a neighborhood of the point p, and thus, the latter
neighborhood is contained in K. Therefore, K is a nonempty closed and
open subset of a connected domain Ω, hence K = Ω and f ≡ 0 on Ω. 2

Proposition 3.2 (Openness Principle.) Each non-constant holomor-
phic function on a connected domain is an open map: the image of each
open subset is open.

Proof Let f be a non-constant holomorphic function on a connected do-
main Ω. It suffices to show that for every point z ∈ Ω the image of arbitrary
ball centered at z contains a neighborhood of the image f(z). Fix a z ∈ Ω
and a complex line L through z where f |L 6≡ const in a neighborhood of
z. The line L exists since f is locally non-constant (uniqueness of analytic
extension). The restriction of the function f to a disk in L ∩ Ω centered at
z is an open map, being a non-constant holomorphic function of one com-
plex variable. This implies that the image of every disk as above contains a
neighborhood of the point f(z), and hence, so does the image of arbitrary
ball in Ω centered at z. The proposition is proved. 2

Corollary 3.3 (Maximum Principle.) The module of a non-constant
holomorphic function on a connected domain Ω cannot achieve its maximum
in Ω.

Proof If a module of a holomorphic function f 6≡ const achieves its max-
imum at a point z ∈ Ω, then the image f(Ω) contains the point f(z) but
avoids the exterior of the circle through f(z) centered at 0. Hence, it con-
tains no its neighborhood, – a contradiction to Openness Principle. The
corollary is proved. 2

Theorem 3.4 (Liouville). Every bounded holomorphic function on all of
Cn is constant.
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Proof The restriction of a bounded holomorphic function f to each complex
line through the origin is constant, being a bounded holomorphic function
on C (Liouville Theorem in one variable). Therefore, f ≡ f(0) on Cn. 2

It is known that for every domain V ⊂ C there exists a holomorphic
function on V that extends analytically to no point of its boundary. This
statement is false in higher dimensions. A basic counterexample, the Hartogs
Figure is provided by the next theorem.

Theorem 3.5 (Hartogs) Let R = (R1, . . . , Rn), Rj > 0, 1 ≤ k < n, r =
(r1, . . . , rk), rs < Rs. Set Rk = (R1, . . . , Rk), R

n−k = (Rk+1, . . . , Rn). Let
V ⊂ ∆Rn−k ⊂ Cn−k be an open subset. Let z = (z1, . . . , zn) be coordinates
on Cn. Set t = (z1, . . . , zk), w = (zk+1, . . . , zn),

A = (∆Rk \∆r)×∆Rn−k , B = ∆Rk × V ⊂ ∆R ⊂ Cn, Ω = A ∪B.

(In the case, when n = 2, k = 1, V = Dr2, r2 < R2, the domain Ω is the
so-called Hartogs Figure, see Fig.1.) Then every function holomorphic on
Ω extends holomorphically to the whole polydisk ∆R = ∆Rk ×∆Rn−k .

            1

t=z
        

w

0

R

     
  r

       1

          1
V

r
   2

       2

  R

Figure 1: The Hartogs Figure for n = 2: picture in the positive quadrant

Proof For simplicity, let us prove the theorem in the case, when n = 2,
k = 1: thus Rk = R1, Rn−k = R2, z = (z1, z2), t = z1, w = z2. The proof in
the general case is analogous. Let f be a function holomorphic on Ω. Fix an
arbitrary δ ∈ (r1, R1). For every w ∈ V the function f(z1, w) is holomorphic
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in z1 ∈ DR1 ⊂ C, since DR1 × {w} ⊂ B ⊂ Ω. Therefore, for every z1 ∈ Dδ

it is expressed as Cauchy integral

f(z1, w) =
1

2πi

∮
|z1|=δ

f(ζ, w)

ζ − z1
dζ. (3.1)

For every fixed w ∈ DR2 the subintegral function is holomorphic in z1 ∈
Dδ. Hence, the integral is also holomorphic in z1 ∈ Dδ, as in the proof of
Osgood’s Lemma. For every fixed ζ ∈ DR1\Dδ ⊃ ∂Dδ the function f(ζ, w) is
holomorphic in w ∈ DR2 , since {ζ}×DR2 ⊂ A ⊂ Ω. Finally, the subintegral
function is holomorphic in (z1, w) ∈ Dδ×DR2 , and hence, so is the integral.
Thus, formula (3.1) extends the function f(z1, w) holomorphically to Dδ ×
DR2 . This holomorphic extension is unique, by the Uniqueness Theorem for
holomorphic extension. Thus, f is holomorphic there and hence, on all of
∆R = DR1 ×DR2 , since δ is an arbitrary number between r1 and R1. This
proves the theorem for n = 2 and k = 1. Theorem 3.5 is proved. 2

Exercise 3.6 (Seminar.) Prove Theorem 3.5 in the general case using mul-
tidimensional Cauchy integral.

Theorem 3.7 (Erasing compact singularities). Let G ⊂ Cn be an open
subset, K b G be a compact subset. Let both G and the complement G \K
be connected. Then every function holomorphic on G \K extends holomor-
phically to all of G.

We prove this theorem only in the case, when the ambient domain is a
polydisk. Its proof in general case is more complicated and can be done by
using, e.g., Bochner–Martinelli integral formula.
Proof of Theorem 3.7 in the case, when G is a polydisk. Let us
prove the theorem in the case when n = 2: in higher dimensions the proof
is literally analogous. Let G = ∆R, R = (R1, R2). Let K1, K2 denote
respectively the images of the compact set K under the projections to the
z1- and z2-axes: K1 b DR1 , K2 b DR2 . Fix an open subset V ⊂ DR2 \K2

and a 0 < r1 < R1 such that K1 b Dr1 . Let Ω be the Hartogs figure from
Theorem 3.5 constructed by the chosen r1, V and R. One has Ω ⊂ ∆R \K.
Therefore, every function holomorphic on ∆R \K is holomorphic on Ω, and
hence, extends to a function holomorphic on all of ∆R, by Theorem 3.5. 2

Exercise 3.8 (Seminar). Prove that every function holomorphic on the
complement of a polydisk centered at the origin to a coordinate subspace of
codimension at least two extends holomorphically to the whole polydisk.
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Hint. Construct an appropriate Hartogs figure in the complement to the
coordinate subspace in question.

4 Implicit Function and Constant Rank Theorems.
Complex manifolds. Extension theorems for func-
tions on manifolds

4.1 Implicit Function and Constant Rank Theorems

Theorem 4.1 (Holomorphic Implicit Function Theorem) Let U ⊂
Cn × C`, (0, 0) ∈ U . Let F : U → C`, (X,Y ) 7→ F (X,Y ) be a holomor-
phic map with F (0, 0) = 0. Let the partial differential ∂F

∂Y (0) : T0C` →
T0C` be a non-degenerate linear operator. Then there exists a neighbor-
hood ∆ = V × W of the origin in Cn × C` such that the intersection
∆ ∩ {F = 0} is the graph {Y = Y (X)} of a holomorphic mapping Y :
V → W . Its differential dY (X0) at each point X0, set Y0 = Y (X0), is
equal to −(∂F∂Y )−1(X0, Y0) ∂F∂X (X0, Y0)dX. That is, the latter matrix product
is equal to the Jacobian matrix of the mapping Y (X) at X0.

Proof The mapping F being considered as a real mapping of the domain
U ⊂ Cn × C` = R2n × R2` to C` = R2` satisfies the statement of the real
Implicit Function Theorem from analysis. The above function Y (X) is well-
defined and C1-smooth on some domain V ⊂ Cn containing the origin, and
Y (0) = 0. The above formula for its derivative holds in terms of real linear
operators. The derivatives of the map F in X and in Y are both C-linear
at each point (X0, Y0) ∈ U , by holomorphicity. Therefore, the differential
dY (X0) is also C-linear at each point X0 ∈ V . But each C1-smooth (vector)
function on V with C-linear differential at each point is holomorphic. Hence,
Y (X) is holomorphic on V . This proves the Holomorphic Implicit Function
Theorem. 2

Recall the following definition.

Definition 4.2 A mapping F : U → V of complex domains (manifolds) is
biholomorphic, if it is holomorphic and has a holomorphic inverse.

Theorem 4.3 (Holomorphic Inverse Map Theorem) Let U ⊂ Cn be a neigh-
borhood of the origin. A holomorphic map G : U → Cn with non-degenerate
differential dG(0) is always a biholomorphic map of some neighborhood of
the origin onto an open subset in Cn.
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Proof It suffices to apply the Implicit Function Theorem to the function
F (X,Y ) = G(Y )−X. 2

Remark 4.4 Each biholomorphic mapping is always a C∞ diffeomorphism.
There exist no biholomorphic mappings of domains of different dimensions,
since this is true for diffeomorphisms.

Theorem 4.5 (Constant Rank Theorem). Let U ⊂ Cn be a neighbor-
hood of the origin. Let F : U → Cm be a holomorphic map, F (0) = 0. Let its
differential have constant rank ` ≤ m on U . Then there exist neighborhoods
V ⊂ U , W ⊂ Cm of the origin and biholomorphisms (coordinate changes)
g : V → V1 × V2 ⊂ Cn−`z × C`w, h : W → W1 ×W2 ⊂ C`x × Cm−`y such that
F (V ) ⊂W and h ◦ F ◦ g(z, w) = (w, 0).

Proof The proof of this theorem repeats the classical proof of the similar
theorem from calculus. It is done in two steps.

Step 1: case, when ` = m. Let us split coordinates in Cn into two groups
(z, w), z = (z1, . . . , zn−`), w = (w1, . . . , w`) so that the partial differential
∂F (0,0)
∂w is epimorphic, i.e., invertible. Consider the auxiliary mapping H :

(z, w) 7→ (z, F (z, w)). It is well-defined and holomorphic on a neighborhood
V1 × V2 ⊂ Cn−` × C` of the origin. Its differential at the origin is non-
degenerate, by construction. Therefore, shrinking the above domains V1,
V2, we get that it is a biholomorphism of the product V1 × V2 onto its
image: a neighborhood V of the origin in C`. Hence, the mapping H has a
holomorphic inverse of the form g : (z, y) 7→ (z,G(z, y)). By construction,
F ◦ g(z, y) = y. The theorem is proved with h = Id.

Step 2: case, when ` < m. Let (z, w) be the above splitting of the
coordinates on Cn. Let us split the coordinates in the image space Cm in
two groups (x, y), x = (x1, . . . , x`), y = (y1, . . . , ym−`), so that the map
F̃ := x ◦ F has rank ` at the origin (and hence, on some its neighborhood).
Then applying Step 1 to the map F̃ we get that there exists a biholomorphic
(invertible with holomorphic) map g : V1 × V2 → W ⊂ Cn, g(0) = 0, such
that F̃ ◦ g(z, w) = w. Hence, F ◦ g(z, w) = (w,ψ(z, w)), ψ is holomorphic
on a neighborhood of the origin. Shrinking V1 and V2, we consider that
the latter neighborhood coincides with V1 × V2. . The rank of the latter
map F ◦ g should coincide with the rank of the map F , that is, with the
dimension ` of the w-variable. This implies that the function ψ(z, w) has
zero derivative in z and hence, depends only on w. Post-composing the map
F ◦ g(z, w) = (w,ψ(w)) with the map h : (x, y) 7→ (x, y − ψ(x)) yields the
map (z, w) 7→ (w, 0). The Constant Rank Theorem is proved. 2
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4.2 Complex manifolds and extension of functions

Definition 4.6 A complex manifold of complex dimension d is a real 2d-
dimensional manifold M admitting an atlas where all the transition func-
tions are biholomorphic. In more detail, it is a topological space M that
admits a covering by open sets Uj such that there exist homeomorphisms
Hj : Uj → Vj ⊂ Cd with the following property:

- for every two intersected open subsets Ui and Uj the transition maps
Hj ◦H−1

i : Hi(Ui∩Uj)→ Hj(Ui∩Uj) ⊂ Vj are holomorphic (they are biholo-
morphic, since their inverses Hi ◦H−1

j are also holomorphic by definition).
Here we suppose that M has a countable basis of neighborhoods.

Definition 4.7 A function f : M → C on a complex manifold M is holo-
morphic if for every j the function f ◦ H−1

j : Vj → C is holomorphic. A
holomorphic map M → Cn and a holomorphic map between complex man-
ifolds are defined analogously.

Definition 4.8 Let M be a n-dimensional complex manifold, and let k ∈
N, k ≤ n. A subset A ⊂ M is a k-dimensional complex (holomorphic)
submanifold, if it is closed and each point x ∈ A has a neighborhood U =
U(x) ⊂M that admits a biholomorphism h on a neighborhood of the origin
in Cnz1,...,zn , h(x) = 0, such that h sends the intersection A ∩ U onto the
intersection of the image h(U) with the coordinate k-plane {zk+1 = · · · =
zn = 0}. The tangent space of a submanifold at its point is defined in the
same way, as the tangent space of a real submanifold; in the holomorphic
case under consideration the tangent space has a natural structure of a
complex vector space.

Example 4.9 Let f : M → Cn−k be a holomorphic vector function, n =
dimM , and let A = {f = 0}. Let 0 be not its critical value: the differential
df(x) at each point x ∈ A is non-degenerate, that is, has rank n− k. Then
A is a k-dimensional submanifold, by the Implicit Function Theorem.

Theorem 4.10 (Erasing codim ≥ 2 singularities). Let M be a complex
manifold, and let A ⊂ M be a complex submanifold of codimension at least
two. Then every function holomorphic on M \A extends holomorphically to
all of M .

Proof It suffices to show that each point x ∈ A has a neighborhood U =
U(x) ⊂ M such that each holomorphic function f : U \ A → C extends
holomorphically to all of U . This holds for a neighborhood U that admits
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a biholomorphism onto a polydisk so that A ∩ U is sent to a coordinate
subspace of codimension at least two: see Exercise 3.8. 2

5 Analytic sets

First in Subsection 5.1 we introduce notion of analytic subsets, present their
basic properties and prove density of regular part. In Subsection 5.2 we prove
that each bounded holomorphic function on a complement to a non-trivial
analytic subset extends holomorphically to all its points. Then in Subsec-
tions 5.3, 5.4 we study the case of germs of local hypersurfaces, i.e., zero
loci of germs of holomorphic functions, where we prove Weierstrass Prepa-
ration Theorem and factoriality of the local ring of holomorphic functions.
Afterwards we will pass to the general theory of analytic subsets.

5.1 Introduction and main properties

Definition 5.1 An analytic subset in a complex manifold M is a subset
A ⊂ M such that each point p ∈ M has a neighborhood U = U(p) ⊂ M
where there exists a finite collection of holomorphic functions fj : U → C,
j ∈ J , such that

A ∩ U = {fj = 0 | j ∈ J}.

Remark 5.2 Each analytic subset is closed. Any holomorphic submanifold
is an analytic subset, but the converse is not true. For example, the coordi-
nate cross A = {xy = 0} ⊂ C2 and the cusp curve B = {y2 = x3} ⊂ C2 are
analytic subsets. But they are not submanifolds. See a brief explanation
(with an exercise) below.

Definition 5.3 The regular part of an analytic subset A ⊂M is the subset
Areg consisting of those points x ∈ A such that there exists a neighborhood
U = U(x) ⊂M for which the intersection U ∩A is a submanifold in U . This
is an open subset in A. The complement Asing := A\Areg is a closed subset
in M called the singular part of the set A.

Exercise 5.4 (Seminar). Let U ⊂ Cn be a domain. Consider a holomorphic
function f : U → C. Set

Zf := {f = 0} ⊂ U, Zof := {x ∈ Zf | df(x) 6= 0}.

Let Zof be dense in Zf , and the complement Zsf := Zf \ Zof be non-empty.
Show that Zf,sing = Zsf . Deduce the statements of the above remark.
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Hint. Suppose to the contrary that Zf is a local submanifold at a point
x ∈ Zsf . Then there exists a neighborhood W = W (x) and a biholomorphism
H that sends W to a domain V ⊂ Cn and sends Zf ∩W to a coordinate
subspace of codimension 1, say, zn = 0. Then the line L through H(x)
parallel to the zn-axis intersects H(W ) once, and so does any close line.
But one can find a parallel line L′ arbitrary close to L that intersects H(W )
at least twice: the restriction to L of the function f ◦H−1 has zero H(x) of
total multiplicity bigger than one, since its differential at H(x) is zero.

Proposition 5.5 Any analytic subset A in a connected manifold M either
coincides with all of M , or is nowhere dense. In the latter case its comple-
ment is dense.

Proof The interior Int(A) is obviously open. It suffices to prove that it is
closed: this will imply that it is either emply, or all of M , by connectivity.
Let p ∈ M be an accumulation point of Int(A). Then p ∈ A. Hence, there
exists a connected neighborhood U = U(p) ⊂M such that the functions fj
defining the set A in U are holomorphic in U and vanish on a non-empty
open subset Int(A) ∩ U . Hence, they vanish identically, by uniqueness of
analytic extension. This implies that A∩U = U and hence, p ∈ Int(A) and
Int(A) is closed. The proposition is proved. 2

Exercise 5.6 (Seminar). Show that in the above second case the comple-
ment M \A is connected.

Proposition 5.7 A finite union of analytic subsets A1 ∪ . . . Ak is analytic.
A finite intersection of analytic subsets A1 ∩ · · · ∩Ak is analytic.

Proof It suffices to prove these statements for union (intersection) of two
analytic subsets A1 and A2 of a complex manifold M .

Let us show that A1 ∩ A2 is analytic. Let x ∈ A1 ∩ A2. Let U be its
neighborhood in M where each Aj ∩ U is defined as zero locus of a finite
collection Fj of holomorphic functions. Then A1 ∩ A2 ∩ U is the zero locus
of the functions from the finite collection F1 ∪ F2. Therefore, A1 ∩ A2 is
analytic.

Let us now show that A1 ∪ A2 is analytic. Recall that the sets A1 and
A2 are closed, being analytic. In the case, when they are disjoint, there
is nothing to prove: each point x ∈ A1 ∪ A2 lies only in one subset Aj ,
its neighborhood U ⊂ M small enough intersects only this Aj , and thus,
U ∩ (A1 ∪A2) = U ∩Aj is defined by the same collection Fj of holomorphic
functions, as Aj ; hence it is analytic. Let now x ∈ A1 ∩ A2. Let U ⊂ M
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be its neighborhood where each Aj ∩ U is zero locus of a finite collections
Fj of holomorphic functions on U . Then the zero locus of the products fg,
f ∈ F1, g ∈ F2, coincides with U ∩ (A1 ∪ A2). Hence, A1 ∪ A2 is analytic.
The statements of the proposition are proved. 2

Theorem 5.8 The regular part of an analytic subset A ⊂M is dense in A.

Proof We prove Theorem 5.8 by induction in the dimension n of the am-
bient manifold M .

Induction base: for n = 1 the statement of the theorem is obvious.
Induction step. Let the statement of the theorem be proved for n ≤ k.

Let us prove it for n = k+1. Let x ∈ A. Let us show that Areg accumulates
to x. Fix some small neighborhood V = V (x) ⊂ M and consider that x is
the origin in a holomorphic chart containing V . We show that Areg ∩V 6= ∅
and then we apply this statement to arbitrarily small V . Thus, we deal with
A as an analytic subset in V ⊂ Cn, 0 ∈ A, where A is defined as the zero
locus of a finite collection of functions holomorphic on V . Fix a holomorphic
function f 6≡ 0 on V , f |A ≡ 0. There exists a (higher) partial derivative g
of the function f (which may be f itself) that vanishes identically on A and
such that some of its partial derivatives ∂g

∂zj
does not vanish identically on A.

Indeed in the opposite case all the partial derivatives of the function f would
vanish at 0, and hence, f ≡ 0, - a contradiction. Thus, g|A ≡ 0, and thus,
the analytic subset Γ = {g = 0} ⊂ V contains A. The regular part of the set
Γ contains the open subset Γ0 := Γ∩{ ∂g∂zj 6= 0} ⊂ Γ, since ∂g

∂zj
|A 6≡ 0 and by

the Implicit Function Theorem. The intersection A0 := Γ0∩A is non-empty,
by assumption. On the other hand, it is an analytic subset in the complex
manifold Γ0 of dimension n−1. Hence, its regular part A0

reg is dense in Γ0∩A
(and thus, non-empty), by the induction hypothesis. But A0

reg is contained
in Areg. Indeed, for every y ∈ A0

reg and every neighborhood W = W (y) ⊂ V
such that W ∩Γ ⊂ Γ0 and A∩W = A0

reg ∩W the former intersection, which
coincides with W ∩ Γ0, is a submanifold in W , and the latter intersection
is a submanifold in the former. Hence, A ∩W is a submanifold in W : a
submanifold of a submanifold in W is obviously a submanifold in W . Finally,
Areg contains a non-empty subset A0

reg ⊂ V . Applying the above arguments
to arbitrarily small neighhborhood V we get that Areg accumulates to x.
Hence, Areg is dense. Theorem 5.8 is proved. 2
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5.2 Extension of holomorphic functions on complements to
analytic subsets

Theorem 5.9 Each holomorphic bounded function on a complement of a
complex manifold to an analytic subset extends holomorphically to the whole
ambient manifold.

Proof It suffices to prove the local version of the theorem, for a bounded
holomorphic function f on the complement of a domain U ⊂ Cnz1,...,zn to the
zero locus Zg = {g = 0} of a holomorphic function g : U → C. Fix an x ∈ Zg.
It suffices to show that f extends holomorphically to a neighborhood of the
point x in Zg. Passing to appropriate local chart we can and will consider
that x = 0, set z = (z1, . . . , zn−1), w = zn, and that g is holomorphic on
the polydisk ∆ = ∆r ×Dδ ⊂ Cn−1

z × Cw and g(0, w) 6≡ 0 in w ∈ Dδ. Then
one can find a circle S1 = {|w| = s} ⊂ Dδ and σ = (σ1, . . . , σn−1), σj < rj ,
such that ∆σ × S1 is disjoint from the zero locus Zg: it suffices to fix a
s ∈ (0, δ) such that g(0, w) 6= 0 whenever |w| = s and then to take σ small
enough. The intersection of each disk {z} × Dδ with Zg is a discrete set
of points. The function f(z, w) with fixed z extends there holomorphically,
being bounded (Erasing Singularity Theorem for holomorphic functions in
one variable). Thus, for every z ∈ ∆σ and every w with |w| < s one has

f(z, w) =
1

2πi

∮
S1

f(z, η)

η − w
dη,

by Cauchy Formula. The subintegral expression is holomorphic in (z, w) ∈
∆σ×Ds. Therefore, the above Cauchy integral extends f(z, w) holomorphi-
cally to the latter product, and hence, to the neighborhood (∆σ ×Ds)∩Zg
of the point x = 0 in Zg. The theorem is proved. 2

5.3 The dimension and proper maps of analytic sets. Rem-
mert Proper Mapping Theorem

Definition 5.10 The dimension dimxA of an analytic set A at its regular
point x ∈ Areg is the dimension at x of the submanifold A ∩ U in a small
neighborhood U = U(x). Its dimension at a point x ∈ Asing is

dimxA := limy∈Areg , y→x dimy A.

The dimension of analytic set A is

dimA := sup
x∈A

dimxA = max
x∈Areg

dimxA.
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Theorem 5.11 (given without proof). For every analytic subset A ⊂ M
its singular part Asing is an analytic subset in M of dimension strictly less
than dimA.

Proposition 5.12 The preimage of an analytic subset in a manifold N
under a holomorphic mapping M → N is an analytic subset in M .

The proposition obviously follows from definition.

Definition 5.13 A map F : M → N between topological spaces is proper,
if the preimage of every compact subset in N is a compact subset in M .

A fundamental result of the theory is the following theorem

Theorem 5.14 (Remmert Proper Mapping Theorem). Let M , N be
complex manifolds, and let A ⊂ M be an analytic subset. Let F : M → N
be a holomorphic map whose restriction to A is proper. Then the image
F (A) ⊂ N is an analytic subset.

Corollary 5.15 Let M , N be complex manifolds, and let N be compact.
Let A ⊂ M ×N be an analytic subset. Then the projection of the set A to
M is an analytic subset in M .

5.4 Decomposition into irreducible components

Definition 5.16 An analytic subset A ⊂ M of a complex manifold M is
irreducible, if it cannot be presented as a union of two analytic subsets
A = A1 ∪A2 such that A1, A2 6= A.

Theorem 5.17 An analytic subset is irreducible, it and only if its regular
part is connected.

Remark 5.18 The main part of the theorem is the statement saying that
irreducibility implies connectivity of regular part. Its proof is very technical.
Here we prove the easy part: the converse.

Proof of the easy part: connectivity implies irreducibility. Suppose
the contrary: there exists an analytic subset A in a complex manifoldM such
that Areg is connected but A is not irreducible: A = A1∪A2, A1,2 6= A. Then
the intersections Aj ∩ Areg are analytic subsets in the connected complex
manifold Areg, and their union is all of Areg. This is possible only in the
case, when some of them, say A1∩Areg coincides with all of Areg: otherwise
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they are both nowhere dense closed subsets in a connected manifold Areg
and cannot cover it together. But then A1 contains A, since A1 is closed and
Areg is dense in A (Theorem 5.8). Therefore, A1 = A. The contradiction
thus obtained proves irreducibility. 2

Theorem 5.19 (given without proof). Let A be an analytic subset of a
complex manifold M . The closure of each connected component Areg,j of
its regular part is an analytic subset in M , which will be denoted Aj. It is
irreducible, by Theorem 5.17; it is called an irreducible component. The
set A is a locally finite union ∪jAj of its irreducible components. This is its
unique decomposition as a locally finite union of irreducible analytic sets.

Remark 5.20 Recall that a finite union of analytic subsets is analytic.
This statement remains valid for infinite but locally finite unions, by the
statement for finite unions and since the notion of analytic subset is local: it
is locally defined as zero locus of a finite collection of holomorphic functions.

5.5 Weierstrass polynomials and Preparatory Theorem

Definition 5.21 A polynomial Pz(w) = wd + a1(z)wn−1 + · · ·+ a0(z) with
variable coefficients depending holomorphically on z = (z1, . . . , zn) from a
neighborhood of the origin in Cn with aj(0) = 0 is a holomorphic function
in n+ 1 variables (z, w) called a Weierstrass polynomial in w.

Remark 5.22 For every fixed z a Weierstrass polynomial does not vanish
identically in w and has the same number d of roots with multiplicity.

Definition 5.23 Let f(z, w) be a germ of holomorphic function at (0, 0) in
Cnz × Cw, f(0, 0) = 0, that does not vanish identically on the w-axis. Let
δ > 0, r = (r1, . . . , rn), rj > 0 be such that the function f is holomorphic on
∆r×Dδ, f(0, w) 6= 0 for w ∈ Dδ\{0} and f |∆r×∂Dδ 6= 0. Then ∆ := ∆r×Dδ

is called a Weierstrass polydisc for the function f .

Remark 5.24 If f(0, w) 6≡ 0 on a neighborhood of zero in the w-axis, then a
Weierstrass polydisk always exists. In general, if f is a holomorphic function
on a neighborhood of the origin in Cn+1, then one can choose coordinates
(z1, . . . , zn, w) in such a way that f(0, w) 6≡ 0, and hence, in the latter
coordinates a Weierstrass polydisk exists.

Theorem 5.25 (Weierstrass preparatory theorem). Let f(z, w) be a
holomorphic function on a neighborhood of the origin in Cn+1 = Cnz × Cw,

25



z = (z1, . . . , zn), with f(0, 0) = 0 and f(0, w) 6≡ 0. Let ∆ = ∆r × Dδ be
a Weierstrass polydisk. Then there exists a unique Weierstrass polynomial
Pz(w) such that on some neighborhood U of the origin one has f(z, w) =
h(z, w)Pz(w), h(z, w) is a holomorphic function on the latter neighborhood
U , h(0, 0) 6= 0. Moreover, Pz(w) is holomorphic on ∆r ×Cw and h(z, w) is
holomorphic and nonvanishing on ∆r ×Dδ.

Proof Fix a Weierstrass polydisc ∆ = ∆r ×Dδ. Set gz(w) = f(z, w). The
function g0 has geometrically unique zero in Dδ: the origin. Let d denote its
multiplicity. Then for every z ∈ ∆r the function gz has d roots with multi-
plicities in Dδ and does not vanish on its boundary. Let b1(z), . . . , bd(z) de-
note its roots. The coefficients of the Weierstrass polynomial we are looking
for are uniquely determined as the basic symmetric polynomials σs = σs(z)
in bj(z) up to sign. (This already proves the uniqueness.) They vanish
at z = 0 by assumption. Let us show that they are holomorphic func-
tions in z. Indeed, they are expressed as polynomials in the power sums
σ̂s(z) =

∑
j b
s
j(z), s ∈ N. One has

σ̂s(z) =
1

2πi

∮
∂Dδ

ζs ∂f∂w (z, ζ)

f(z, ζ)
dζ. (5.1)

Indeed, the latter integral is equal to the sum of residues of the subintegral
expression. The nonzero residues may exist only at those ζ, where gz(ζ) =
f(z, ζ) = 0. The residue value corresponding to a root ζ of the function
gz(w) of multiplicity ν is equal to νζs. Indeed, one has

gz(u) = f(z, u) = c(u− ζ)ν(1 +O(u− ζ)), as u→ ζ; c 6= 0,

∂f

∂w
(z, u) = cν(u− ζ)ν−1(1 + o(1)) +O((u− ζ)ν) =

ν

u− ζ
f(z, u)(1 + o(1)).

This implies that the residue at ζ is equal to νζs. This proves (5.1). The
right-hand side in (5.1) is holomorphic in z ∈ ∆r, since the subintegral
expression is holomorphic and its restriction to the integration circle is a
uniformly bounded function whenever z run over arbitrary compact subset
in ∆r. Therefore, the integral and hence, the power sums σ̂s(z) are holo-
morphic on ∆r. Hence, the elementary symmetric polynomials σs are also
holomorphic. Therefore, the function

Pz(w) =
d∏
j=1

(w − bj(z)) = wd +
d∑
s=1

(−1)sσs(z)w
d−s
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is a Weierstrass polynomial vanishing exactly on the zero set Γ = {f = 0}
of the function f . The ratio h = f

P and its inverse h−1 are holomorphic
functions on the complement (∆r ×Dδ) \ Γ. Let us show that each of them
extends holomorphically to Γ (say h; for h−1 the proof is the same): then
the theorem follows immediately. For every fixed z the function h(z, w) has
a nonzero limit, as w tends to a root of the polynomial Pz(w), since the
latter root has the same multiplicity for both functions Pz(w) and gz(w).
Therefore, the function h(z, w) is holomorphic in w ∈ Dδ for every fixed
z ∈ ∆r. Hence, it can be written as Cauchy integral

h(z, w) =
1

2πi

∮
|ζ|=δ

h(z, ζ)

ζ − w
dζ, w ∈ Dδ.

The subintegral expression is holomorphic in (z, w) ∈ ∆ and uniformly
bounded with derivatives and continuous on compact subsets in ∆. There-
fore, the latter integral, and hence h are holomorphic there. Similarly, h−1

is holomorphic. Hence, h is a unity.
The uniqueness of Weierstrass polynomial satysfying the statements of

the theorem follows by construction: for every z ∈ ∆r this is the unique
monic polynomial in w having the same roots, as f(z, w)||w|<δ, and with the
same multiplicities. 2

5.6 Local rings. Factorization of holomorphic functions as
products of irreducible ones

Definition 5.26 Let X be a topological space, x ∈ X. Two functions f and
g defined on neighborhoods Uf and Ug of the point x are called x-equivalent,
if there exists a neighborhood W = W (x) ⊂ Uf ∩Ug where f ≡ g. The germ
of a function at a point x is its x-equivalence class.

Remark 5.27 In general, two functions (e.g., smooth functions on a man-
ifold) defining the same germ at x can be distinct. But if two holomorphic
functions on a connected manifold M have the same germ at some point,
then they are identically equal on M , by uniqueness of analytic extension.
For every point x ∈M there is a 1-to-1 correspondence between germs at x
of functions f holomorphic on some its neighborhoods Uf depending on f
(i.e., functions holomorphic just at x) and germs of holomorphic functions
at 0 ∈ Cn, n = dimM , or equivalently, converging power series.

Definition 5.28 The ring of germs of holomorphic functions f at 0 ∈ Cn
will be called the local ring and denoted On. Recall that a unity of a ring
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is an invertible element, i.e., an element u for which there exists an inverse
u−1, uu−1 = 1. Thus, a unity in On is a germ of holomorphic function that
does not vanish at 0.

Remark 5.29 The Weierstrass Preparation Theorem implies that each germ
of holomorphic function f(z, w) at (0, 0) ∈ Cnz × Cw with f(0, 0) = 0 and
f(0, w) 6≡ 0 is the product of a Weierstrass polynomial and a unity in On+1.

Definition 5.30 An element of a ring is irreducible, if it is not a unity and
cannot be presented as a product ab, where a and b are not unities. A ring is
factorial, if each its non-zero element that is not a unity can be represented
in a unique way (up to permutation and multiplication by unities) as a
product of irreducible elements.

Here we prove the following theorem.

Theorem 5.31 The local ring On is factorial.

In the proof of Theorem 5.31 we use the Weierstrass Preparatory Theo-
rem and the following well-known Gauss Lemma and property of Weierstrass
polynomials.

Lemma 5.32 (Gauss). Let R be a factorial ring. Then the polynomial ring
R[w] is also factorial.

Proposition 5.33 A Weierstrass polynomial Pz(w), z = (z1, . . . , zn) ∈ Cn,
w ∈ C has irreducible germ at 0 ∈ Cn+1 as an element of the local ring On+1,
if and only if it is irreducible as a polynomial over the local ring On.

In the proof of the proposition and in what follows we will use the next
trivial remark.

Remark 5.34 A monic polynomial Pz(w) with coefficients being holomor-
phic functions in z is Weierstrass (i.e., the coefficients vanish at z = 0), if
and only if P0(w) = wd.

Proof of Proposition 5.33. A Weierstrass polynomial Pz(w) with irre-
ducible germ in On+1 is irreducible as a polynomial over On. Indeed, let,
to the contrary, Pz(w) = Q1,z(w)Q2,z(w), with Q1, Q2 ∈ On[w] being not
unities. Then at least one of them, say Q1 is a unity in On+1, since Pz(w)
is irreducible in On+1. Therefore, its restriction Q1,0(w) to the w-axis does
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vanish at 0 and is a divisor of the monomial wd = P0(w). But the only di-
visors of positive degree of a monomial wd are monomials wk, k ≤ d, which
vanish at 0. Therefore, the polynomial Q1,z(w) has zero degree in w. Hence,
it is a function of z; thus, it lies in On and does not vanish at 0. Thus, it is a
unity in On, and hence, in On[w], – a contradiction. Let now Pz(w) be irre-
ducible as a polynomial over On. Let us prove that it defines an irreducible
germ at 0 ∈ Cn+1. Suppose the contrary: Pz(w) = fg, f(0, 0) = g(0, 0) = 0.
Then f(0, w), g(0, w) 6≡ 0, since the same holds for their product P0(w).
Therefore,

f(z, w) = u(z, w)Pf,z(w), g(z, w) = v(z, w)Pg,z(w),

where u and v are unities in On+1 and Pf,z(w), Pg,z(w) are Weierstrass
polynomials (Weierstrass Preparatory Theorem). By construction, they are
monic polynomials, and for every fixed z the union of their root collections
(with multiplicities added) coincides with the root collection (with multiplic-
ities) of the polynomial Pz(w). This together with the uniqueness part of
the Weierstrass Preparatory Theorem implies that Pz(w) = Pf,z(w)Pg,z(w),
- a contradiction to the irreducibility of the polynomial Pz(w) as an element
of the ring On[w]. The proposition is proved. 2

Proof of Theorem 5.31. Induction on n.
Induction base: n = 1. The statement is obvious: each non-identically

zero germ of holomorphic function of one variable that vanishes at 0 is
h(w)wd, h(0) 6= 0; w is irreducible and h is a unity.

Induction step. Let we have shown that the ring On is factorial. Let us
show that On+1 is factorial.

Let f ∈ On+1, f(0) = 0, f 6≡ 0. Let us fix coordinates (z, w) centered
at 0, z = (z1, . . . , zn) ∈ Cn, w ∈ C, such that f(0, w) 6≡ 0. Then up to
muptiplication by unity, f is a Weierstrass polynomial Pz(w). Therefore, it
admits a unique factorization as a product of some of irreducible polynomials
Pj,z(w) in the ring On[w], since the latter ring is factorial (Gauss Lemma and
the induction hypothesis). The highest degree coefficients of the polynomials
Pj,z(w) do not vanish at 0, since their product is equal to 1. Therefore,
multiplying Pj,z by unities in the coefficient ring On, one make them monic.

Claim. Thus normalized polynomial factors Pj,z(w) are Weierstrass.
Proof For z = 0 one has

∏
j Pj,0(w) = P0(w) = wd. Hence, Pj,0(w) = wdj

for some dj ,
∑

j dj = d, and Pj,z(w) are Weierstrass (Remark 5.34). 2

The polynomials Pj,z(w) are irreducible as elements of the local ring
On+1, since they are irreducible as elements of the ring On[w] and by Propo-
sition 5.33. The existence of decomposition in On+1 of the function Pz(w)
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as a product of irreducible ones is proved. Let us now prove uniqueness.
Let Pz(w) =

∏
j fj(z, w) be some decomposition into product of irreducible

factors fj . Multiplying fj by unities in the ring On+1, we get Weierstrass

polynomials f̂j,z(w): the functions fj do not vanish on the w-axis, since the

same is true for the product of their powers. But then Pz(w) =
∏
j f̂j,z(w),

as in the proof of Proposition 5.33. The Weierstrass polynomials f̂j,z(w) are
irreducible as elements of the ring On[w], by the same proposition. Hence,
the latter product decomposition coincides with the above one: f̂j,z = Pj,z
up to permutation, by factoriality of the ring On[w]. The uniqueness is
proved. The induction step is over, and Theorem 5.31 is proved. 2

5.7 Zero locus as a ramified covering. Geometric factoriza-
tion and irreducibility criterion

Definition 5.35 Let M be a topological space, x ∈ M . Two subsets
Y1, Y2 ⊂M are x-equivalent, if there exists a neighborhood U = U(x) ⊂M
such that U ∩ Y1 = U ∩ Y2. The x-equivalence class of a subset is called
its germ at x. A germ of subset Y ⊂ M at x is connected (or dense in an-
other germ of subset W ⊃ Y ) if there exists arbitrarily small neighborhood
U = U(x) ⊂M such that Y ∩ U is connected (dense in W ∩ U).

Theorem 5.36 Let f ∈ On be a germ of holomorphic function,

Zf = {f = 0}, Zof := {z ∈ Zf | df(z) 6= 0}.

(Note that Zof ⊂ Zf,reg.) A germ f is irreducible, if and only if the germ at
0 of the set Zof is dense in Zf and is connected.

The main step in the proof of Theorems 5.36 is the next theorem stating
that the germ of zero locus has a covering structure. To state it, let us recall
the following definition.

Definition 5.37 A (topological) covering is an epimorphic mapping of topo-
logical spaces π : Y → X such that each point x ∈ X has a neighborhood
U = U(x) whose preimage π−1(U) is a disjoint union of open subsets Uj ⊂ Y
such that the projections πj : Uj → U are homeomorphisms. The space X
is called the base, and the space Y is called the covering space over X. If
for every x ∈ X the number of preimages π−1(x) is finite and the same for
all x ∈ X, then their number is called the degree of the covering. (Recall
that if X is path-connected, then the number of preimages π−1(x) is inde-
pendent of x.) In the case, when Y and X are complex manifolds and πj
are biholomorphic, we will say that the covering is holomorphic.
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Remark 5.38 In fact, for a topological covering between complex mani-
folds holomorphicity is equivalent to just holomorphicity of the projection
π. This follows from the fact that if a holomorphic map between domains
U, V ⊂ Cn is a homeomorphism, then it is biholomorphic. The proof of this
statement is omitted for simplicity.

Theorem 5.39 Let f(z, w) be a holomorphic function on a neighborhood
of (0, 0) ∈ Cnz × Cw, f(0, 0) = 0, f(0, w) 6≡ 0. Let ∆ = ∆r × Dδ be its
Weierstrass polydisk,

Zf = {f = 0} ∩∆.

1) There exists an analytic subset A ⊂ ∆r, A 6= ∆r, set

V := ∆r \A, Z̃f := Zf ∩ (V × C), (5.2)

such that Z̃f ⊂ V × C is a submanifold and the projection π : Z̃f → V is
a holomorphic covering. The degree of this covering is no greated than the
order of zero at 0 of the function f(0, w).

2) Let Γo1, . . . ,Γ
o
m denote the connected components of the covering man-

ifold Z̃f . For every component Γoj all its points (zj , wj) correspond to zeros
wj of the function f(zj , w) of the same multiplicity µj.

3) Let dj denote the degree of the component Γoj as a covering π : Γoj →
∆r \A. For every z ∈ ∆\A let wj1(z), . . . , wjdj (z) denote the w-coordinates
of the π-preimages of the point z lying in Γoj . The function

Pj,z(w) =

dj∏
s=1

(w − wjs(z)) (5.3)

is a Weierstrass polynomial holomorphic on ∆. It is irreducible in the ring
of functions holomorphic on ∆, and its zero locus is the closure Γj := Γ

o
j .

4) There exists a function h(z, w) holomorphic and nowhere vanishing
on ∆ such that

f(z, w) = h(z, w)
m∏
j=1

P
µj
j,z (w).

Proof Without loss of generality we consider that the function f is a Weier-
strass polynomial Pz(w) of degree d. Set

kz := the number of distinct roots of the polynomial Pz(w); k := max
z∈∆r

kz,

A := {z ∈ ∆r | kz < k}. (5.4)
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Proposition 5.40 The subset A ⊂ ∆r is analytic.

Proof A polynomial P of degree d has ` distinct roots, if and only if it
has d− ` common roots with its derivative. (Exercise: prove this.) The set
A is thus exactly the set of those points z ∈ ∆r for which the polynomial
Pz(w) and its derivative P ′z(w) in w have at least d − k + 1 common roots
with multiplicities. Or equivalently, if for this fixed individual z they have
a common polynomial divisor h(w) of degree at least d− k + 1. This holds
if and only if there exist polynomials R(w) and S(w),

degR = degP ′z−deg h ≤ d−1−d+k−1 = k−2, degS = degPz−deg h ≤ k−1,

R(w)Pz(w)− S(w)P ′z(w) = 0. (5.5)

Namely, equation in (5.5) always holds for R = P ′zh
−1, S = Pzh

−1, where h
is a higher degree common divisor of the polynomials Pz and P ′z. Conversely,
if polynomials R and S as in (5.5) exist and are normalized to be coprime,
then R is a divisor of P ′z, S is a divisor of Pz, and h = R−1P ′z = S−1Pz is
the higher common divisor of degree at least d − k + 1 of the polynomials
Pz and P ′z. The above R and S exist, if and only if the system of 2k − 1
polynomials

Pz, wPz, . . . , w
k−2Pz, P ′z, wP

′
z, . . . w

k−1P ′z

is linearly dependent, or equivalently, their coefficient matrix has rank at
most 2k − 2. This linear dependence condition (vanishing of all the highest
size minors of the above matrix) is a system of polynomial equations on
the coefficients of the polynomial Pz. This yields a system of holomorphic
equations on z ∈ ∆r and proves analyticity of the subset A. 2

Proposition 5.41 Set V = ∆r \ A, Z̃f = Zf ∩ (V × C). The subset Z̃f
is a complex submanifold in V × C, and the projection π : Z̃f → V is a
holomorphic covering.

Proof The projection π : Z̃f → V is a topological covering, which fol-
lows from definition: the roots ζj(z) of the Weierstrass polynomial do not
bifurcate at z ∈ V and are local well-defined and continuous functions
of z ∈ V , by the definition of the set V . It suffices to show that each
root ζ(z) = ζj(z) depends locally holomorphically on z ∈ V : each point
x ∈ V has a neighborhood W = W (x) ⊂ V where ζ(z) is holomorphic.
Indeed, fix a point (x, ζ(x)) ∈ Z̃f and consider a Weierstrass polydisk
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∆x = Ω1 × Ω2 ⊂ V × C centered at x for the function Pz(w). The Weier-
strass polynomial corresponding to the function Pz(w)|∆x has the zero locus
Z̃f ∩ ∆x and has one root ζ(z) for every z ∈ Ω1. Hence, it has the form
(w − ζ(z))k = wk − kζ(z)wk−1 + . . . . Thus, −kζ(z) is its coefficient, and
hence, is holomorphic. The proposition is proved. 2

The degree of the covering Z̃f is equal to the number of distinct roots
ζj(z) for z ∈ V , which is no greater than the degree of the Weierstrass
polynomial Pz(w). This together with Propositions 5.40 and 5.41 imply
Statement 1) of Theorem 5.39. Its Statement 2) on multiplicity follows from
the last argument in the proof of Proposition 5.41. The function Pj,z(w) from
its Statement 3) is clearly holomorphic and bounded on the complement
∆\π−1(A) to an analytic subset π−1(A). Hence, it extends holomorphically
to all of ∆. It is a Weierstrass polynomial, by construction and since all
the roots wjs(z) of the Weierstrass polynomial Pz(w) converge to zero, as
z → 0. Its zero locus is Γj , by construction and continuous dependence of
its roots on z. Let us prove its irreducibility in ∆. Suppose the contrary: it
is a product of two functions f1, f2, each vanishes somewhere in ∆. Then
the intersection of zero locus of each f` with Γoj is an analytic subset A` in
the connected manifold Γoj . Hence, some of them, say A1, coincides with Γoj ,
and f1 ≡ 0 on Γj . Replacing f1 by its Weierstrass polynomial, we get that
f1 = Pj,z(w). Hence, f2 ≡ 1, - a contradiction. Thus, Pj,z(w) is irreducible
in ∆. Statement 3) is proved. Statement 4) follows from construction and
Weierstrass Preparation Theorem. This proves Theorem 5.39. 2

Proof of Theorem 5.36. Let f(z, w) be a germ at (0, 0) of holomorphic
function in (z, w) ∈ Cnz × Cw, f(0, 0) = 0. We choose coordinates (z, w) so
that f(0, w) 6≡ 0. Without loss of generality we can and will consider that f
is a Weierstrass polynomial. Let ∆ = ∆r ×Dδ be its Weierstrass polydisk.
The decomposition (5.3) from Theorem 5.39 implies that if f is irreducible,
then Z̃f consists of only one connected component, i.e., Z̃f = Γo1, whose
points (z0, ws(z0)) correspond to roots ws of multiplicity one of the Weier-
strass polynomial f . This implies that df(z0, ws(z0)) 6= 0. Hence, Z̃f ⊂ Zof is
an open dense connected subset in a complex manifold Zof : the complement

to the analytic subset Zof ∩π−1(A). Thus, Zof is also connected. Conversely,
connectivity of the germ of the set Zof is equivalent to connectivity of its in-
tersection with a Weierstrass polydisk ∆r ×Dδ with r small enough, which
in its turn equivalent to connectivity of the covering Z̃f in the same polydisk
and simplicity of the roots of the Weierstrass polynomial f corresponding
to its points. This together with Theorem 5.39 implies irreducibility of the
function f in the same (small) polydisk. Theorem 5.36 is proved. 2
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5.8 Zero loci of functions of two variables and Newton dia-
grams

5.8.1 Zero loci of irreducible germs as parametrized curves

Below we consider germs of functions in two complex variables and show
that the zero locus of an irreducible germ is a parametrized curve, see the
following definition.

Definition 5.42 A germ of planar parametrized curve is the germ at 0 ∈
C2
z,w of image of a bijective holomorphic map t 7→ (φ(t), ψ(t)), t ∈ Dε ⊂ C.

Remark 5.43 In the case, when the parametrized curve does not lie in the
w-axis, a conformal change of parameter transforms its parametrization to
a one of the form either t 7→ (t, 0), or

t 7→ (tq, ctp(1 +O(t)), c ∈ C \ {0}. (5.6)

Theorem 5.44 A germ of function f(z, w) in O2 is irreducible, if and only
if its zero locus Zf is a germ of parametrized curve, and df(x) 6≡ 0 in x ∈ Zf
(or equivalently, df(x) 6= 0 for x ∈ Zf \ {0}).

Using Theorem 5.44, we will later present an explicit necessary irre-
ducibility condition for a function of two variables in terms of a finite part
of its Taylor terms: the so-called Newton diagram.

In the proof of Theorem 5.44 we use the following corollary of Theorem
5.39 in the case of two variables.

Corollary 5.45 In Theorem 5.39 in the case of two variables choosing a
Weierstrass polydisk, which is a bidisk ∆ = Dr ×Dδ, with r small enough,
one can achieve that either A = ∅, or A = {0}. In the former case the set
Zf = Z̃f is a one-dimensional submanifold in ∆r × C bijectively projected

onto ∆r. In the latter case the set Z̃f is a one-dimensional submanifold
in the complement of the ambient Weierstrass polydisk to the w-axis; each
its connected component is a finite degree covering over the punctured disk
Ḋr = Dr \ {0}.

Before starting the proof of Theorem 5.44 let us recall the following
background material on coverings.

Theorem 5.46 (Covering Homotopy Theorem). Let π : M → B be
a covering. Then for every path α : [0, 1] → B and every x0 ∈ π−1(α(0))
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there exists a unique path α̃ : [0, 1] → M starting at x0 and projected to α:
π ◦ α̃(t) = α(t). It is called the lifting of the path α starting at x0.

The next proposition deals with coverings over a punctured disk Ḋr ⊂
C. It is well-known that its fundamental group π1(Ḋr, z0), z0 ∈ Ḋr, is
isomorphic to Z and generated by the homotopy class [α] of a path α in Ḋr

starting at z0 and going counterclockwise around the origin along a circle
centered at 0. For every covering π : M → Ḋr of a finite degree d the fiber
π−1(z0) ∈M consists of d points x1, . . . , xd. The fundamental group of the
base acts on the fiber by permutations (thus, elements of the group Sd) as
follows. For every xj ∈ π−1(z0) let α̃j : [0, 1]→ M denote the lifting of the
path α that starts at xj . Its endpoint α̃j(1) lies in π−1(z0), since the path
α is closed, and hence, coincides with some point xσ(j); here σ ∈ Sd is a
permutation of the indices 1, . . . , d.

Proposition 5.47 The covering M is connected, if and only if the above
permutation σ ∈ Sd given by the action of the element [α] on π−1(z0) is a
cyclic permutation. Or equivalently, if and only if its action is transitive:
for every xj , xk ∈ π−1(z0) there exists an m ∈ Z such that σm(xj) = xk.

Proof Connectivity is clearly equivalent to the statement that every two
points xj , xk ∈ π−1(z0) can be connected by a path in M . The projection of
the latter path to the base Ḋr is homotopic to a power αm. Then σm(xj) =
xk, by definition. Conversely, transitivity implies connectivity, by the above
argument. A permutation is transitive, if and only if it is cyclic. This proves
the proposition. 2

Proposition 5.48 Every connected holomorphic covering π : M → Ḋr of
degree d is isomorphic to the standard degree d power covering πst,d : Ḋ

r
1
d
→

Ḋr, πst,d(t) = td. This means that there exists a biholomorphism ψ : Ḋ
r
1
d
→

M that forms a commutative diagram with the projections: π ◦ ψ = πst,d.

Proof Fix a point x0 ∈ π−1
st,d(z0) ⊂ Ḋ

r
1
d

and a point y0 ∈ π−1(z0) ⊂M . We

set ψ(x0) = y0. Let us extend ψ along paths. Namely, for every x ∈ Ḋ
r
1
d

we

take an arbitrary path β̃1 : [0, 1]→ Ḋ
r
1
d

going from x0 to x. Let β denote its

projection to Ḋr. Let β̃2 : [0, 1]→M denote the lifting to M of the path β
that starts at y0. Set ψ(x) = y := β̃2(1). The map thus constructed is locally
biholomorphic. It remains to show that it is well-defined together with its
inverse ψ−1. We will check well-definedness (independence of the path β̃1)
of the map ψ: the same statement for its inverse is proved analogously. It
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suffices to show that thus constructed map ψ sends a closed path β̃ with
base point at x0 to a closed path. Indeed, consider an arbitrary path β̃ in a
connected covering over Ḋr with endpoints lying in the fiber π−1(z0). The
path β̃ is closed, if and only if its projection β := π ◦ β̃ is homotopic to αdm

for some m ∈ Z. This follows from Proposition 5.47. Let the above path β̃
lie in the standard covering Ḋ

r
1
d

and be closed. Then β is homotopic to αdm.

The path ψ(β̃(t)) in M is the lifting of the same path β, as β̃. Therefore, it
is also closed, as is β̃, by the above closeness criterion. The proposition is
proved. 2

Proof of Theorem 5.44. Let f(z, w) be a germ of holomorphic function
of two variables, f(0, 0) = 0, f 6≡ 0. We choose coordinates (z, w) so that
f(0, w) 6≡ 0. Let ∆ = Dr × Dδ be its Weierstrass polydisk chosen as in
Corollary 5.45. Then either A = ∅, or A = {0}. Without loss of generality
we consider that f is a Weierstrass polynomial, dividing it by a nonvanishing
holomorphic function.

The function f is irreducible in ∆, if and only if the corresponding cov-
ering Z̃f over Dr (or over Ḋr) is connected and its points correspond to
simple zeros of the Weierstrass polynomial f as a function of w (Theorem
5.39). In both cases we will restrict our covering to Ḋr. If the covering is
connected, then it is bijectively parametrized by a punctured disk Ḋ

r
1
d
: the

parametrization realizes its covering isomorphism with the standard cover-
ing t 7→ td (Proposition 5.48). The latter parametrization being a bounded
holomorphic function, it extends to the puncture and hence, sends 0 to 0 and
yields a bijective parametrization D

r
1
d
→ Zf := {f = 0} ∩∆. Simplicity of

zeros implies that df(x) 6= 0 for every x lying in the open and dense subset
Z̃f ⊂ Zf . Thus, we have proved that if f is irreducible in a Weierstrass
bidisk ∆ chosen as in Corollary 5.45, then its zero locus is a parametrized
curve, and df(x) 6= 0 for x ∈ Zf \ {0}.

Let us prove the converse. Fix a polydisk ∆ as in Corollary 5.45. Let
Zf be a parametrized curve, and let df(x) 6= 0 for x ∈ Zf \ {0}. Then

Z̃f is clearly connected and its points correspond to simple zeros of the
Weierstrass polynomial f . Hence, f is irreducible in ∆, by Theorem 5.39.

Passing to a smaller Weierstrass bidisk does not change connectivity
of covering, by Proposition 5.47. Parametrization of smaller covering is
obtained by restriction of parametrization of the initial, bigger covering, to
a smaller disk. This proves Theorem 5.44. 2

Theorem 5.49 Every germ of parametrized curve in (C2, 0) is zero locus
of an irreducible germ f ∈ O2.
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Proof The case, when the curve is a line is obvious: it is zero locus of
a linear function. Let now a non-linear parametrized curve be given by
a germ at 0 of injective holomorphic map γ(t) = (γ1(t), γ2(t)), γ(0) = 0.
Then γ1(t) = ctd(1 + O(t)), as t → 0; d ∈ N, c 6= 0. Therefore, there exists
a holomorphic function τ(t), τ(0) = 0, τ ′(0) 6= 0, such that γ1(t) = (τ(t))d.
Let us take τ as a new parameter. Then the curve takes the form γ(τ) =
(τd, ζ(τ)), ζ(τ) is a holomorphic function on a disk Dr ⊂ C, ζ(0) = 0. For
every (z, w) ∈ Ḋr × C set

f(z, w) :=
∏
ud=z

(w − ζ(u)). (5.7)

The function f(z, w) is holomorphic on the complement of the product Dr×
C to the analytic subset {0} ×C and bounded on its intersection with each
ball in C2. Therefore, f(z, w) extends analytically to all of Dr × C so that
f(0, 0) = 0 (Theorem 5.9). It is a Weierstrass polynomial whose zero locus
is the intersection of the curve γ with Dr × C. Its points different from the
origin correspond to simple zeros of the function f(z, w) as a function of
w. Both latter statements follow from construction. Therefore, the function
f(z, w) is irreducible in O2, by Theorem 5.44. Theorem 5.49 is proved. 2

5.8.2 Newton diagrams and irreducible factors

Here we present a partial description of irreducible factors of a holomor-
phic germ in O2 in terms of its Newton diagram, see the next definition.
As a corollary, we prove lower bound of the number of essentially distinct
irreducible factors by the number of edges in the Newton diagram.

Definition 5.50 Let f(z, w) be a germ of holomorphic function at the ori-
gin, f(0, 0) = 0. To each monomial amnz

mwn entering its Taylor series with
non-zero coefficient amn we put into correspondence the positive quadrant
with vertex (m,n): the quadrant Km,n = R2

≥0 + (m,n) ⊂ R2
≥0. Set

K = Kf = the convex hull of ∪amn 6=0 Km,n.

Remark 5.51 It follows from definition that the above convex hull can be
taken as a convex hull of a finite union of appropriate quadrants Km,n, and
the number of edges of its boundary is always finite. There are exactly two
semi-infinite edges; each of them either lies in a coordinate axis, or is parallel
to an axis; one edge per axis.
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Definition 5.52 The Newton diagram Nf of a germ f(z, w) is the com-
plement of the boundary ∂Kf to the coordinate axes. More precisely, we
consider that all the boundary vertices of the diagram Nf are contained in
Nf , even those of them that lie in some of the axes.

Example 5.53 The Newton diagram of the function z consists of one edge:
the vertical semi-interval {1}×[0,+∞). The Newton diagram of the function
zw consists of two edges: the boundary edges of the quadrant K1,1, which
are parallel to the coordinate axes. The Newton diagram of a homogeneous
polynomial a0z

d + · · · + adw
d with a0, ad 6= 0 consists of one edge: the

segment [(d, 0), (0, d)]. The Newton diagram of the cusp polynomial w2− z3

consists of one edge: the segment [(0, 2), (3, 0)]. The Newton diagram of
the polynomial z3 +w3 + zw+ zw3 consists of two edges: [(3, 0), (1, 1)] and
[(1, 1), (0, 3)].

Remark 5.54 Multuplication of the germ f by unity in the local ring of
germs does not change the Newton diagram. But (even a linear) change of
variables may change the Newton diagram and even the number of its edges:
the polynomial zw has two-edge Newton diagram in the coordinates (z, w)
and one-edge diagram in the coordinates (x, y), x = z − w, y = z + w.

Theorem 5.55 1) The Newton diagram of an irreducible germ of holomor-
phic function f at 0 ∈ C2, f(0) = 0, consists of one edge.

2) Let f be irreducible, f(z, 0), f(0, w) 6≡ 0, and let

γ : t 7→ (tq, ζ(t)), ζ(t) = ctp(1 +O(t))), q, p ∈ N, c 6= 0, (5.8)

be a germ of injective parametrization of its zero locus. Then its Newton
diagram is the edge [(p, 0), (0, q)].

Proof If an irreducible germ f of holomorphic function vanishes on the
w-axis, then the w-axis is exactly its zero locus, and up to multiplication by
unity, f = z. Thus, its Newton diagram consists of one edge: the vertical
edge 1 × R≥0. The case, when f(z, 0) ≡ 0, is treated analogously. Let now
f(0, w) 6≡ 0, f(z, 0) 6≡ 0. Without loss of generality we consider that f is a
Weierstrass polynomial. Then

f(z, w) =
∏
uq=z

(w−ζ(u)) =
∏
uq=z

(w−cup(1+o(1)) = wq+

q−1∑
k=1

ak(z)w
q−k+a0(z),

ak(z) = O(z
kp
q ), a0(z) = c′zp(1 + o(1)), c′ 6= 0,

38



see (5.7). Thus, its monomials with non-zero Taylor coefficients have bide-

grees (m,n) with n ≤ q andm ≥ (q−n)p
q . Or equivalently, the latter bidegrees

satisfy the inequality mq + np ≥ pq. The latter inequality is equivalent to
the statement that (m,n) lies either in the edge [(p, 0), (0, q)], or above it.
Taking into account that the vertices of the latter edge correspond to mono-
mials zp, wq entering f with non-zero coefficients, we get that the Newton
diagram coincides with the edge [(p, 0), (0, q)]. Theorem 5.55 is proved. 2

Theorem 5.56 Consider an arbitrary germ of holomorphic function f(z, w)
and its factorization as a product of powers of its irreducible factors. To each
edge E of its Newton diagram Nf corresponds at least one irreducible factor,
whose Newton diagram consists of an edge parallel to E. And conversely,
each edge of the Newton diagram of any irreducible factor is parallel to an
edge of the Newton diagram Nf .

Corollary 5.57 The number of distinct irreducible factors of any germ f ∈
O2 is no less than the number of edges in its Newton diagram Nf .

The proof Theorem 5.56 is based on the following proposition.

Proposition 5.58 Let f and g be two non identically zero germs of holo-
morphic functions at 0 ∈ C2. Then

Kfg = Kf +Kg = {u+ v | u ∈ Kf , v ∈ Kg}.

For every edge E of the Newton diagram of either f , or g there exists a
unique edge parallel to E of the Newton diagram of the product fg. Vice
versa, each edge of the Newton diagram of the product fg is parallel to an
edge of Newton diagram of either f , or g.

Proof We will be dealing with (may be infinite) convex polygons in R2:
(may be unbounded) convex subsets whose boundary is a locally finite union
of adjacent segments. Basic examples are the subsets Kf corresponding to
germs f ∈ O2.

Recall that a vertex of a convex polygon K ⊂ R2 that is a union of posi-
tive quadrants is a point of its boundary that is contained in no straightline
interval lying in K. For every vertex A ∈ ∂K there exists an oriented line
L through A such that K ∩ L = {A} and K \ {A} lies on the positive side
from the line L. The latter line L has always negative slope. A half-plane
bounded by L is called positive, it it contains a positive quadrant (a, b)+R2

≥0.
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The fact that the sum of convex polygons is a convex polygon obviously
follows from definition. Let us describe the vertices of the sum. To do this,
let us introduce the following definition.

Definition 5.59 Let K1,K2 ⊂ R2 be two (may be infinite) polygons. Two
vertices A1 ∈ K1 and A2 ∈ K2 are called compatible, if there exists a pair of
co-oriented parallel lines L1 and L2 with negative slope such that Lj ∩Kj =
{Aj} and Kj lies on the positive side from the line Lj .

Remark 5.60 For a given vertex A1 ∈ K1 there may exist several compat-
ible vertices A2 ∈ K2. For example, this is the case, if K1 is a triangle and
K2 is a quadrilateral.

Proposition 5.61 The vertices of the sum K1 +K2 of two convex polygons
in R2 are the sums A1 + A2 through all the pairs of compatible vertices
(A1, A2) of the polygons K1 and K2 respectively. Each edge of the sum
K = K1 + K2 is parallel to an edge of either K1, or K2. Conversely, each
edge of either K1, or K2 is parallel to an edge of their sum K.

Proof The fact that the sums of compatible vertices A1, A2 are vertices
of the sum K1 +K2 follows from the fact that the sum K1 +K2 lies in the
positive half-plane with respect to the line L = L1 + L2 parallel to L1, L2

and touches L exactly at the point A1 +A2; the latter statement obviously
follows from definition. Vice versa, it is obvious that vertices of the sum
K1 + K2 should be sums of some vertices A1 + A2 of the polygons K1 and
K2. Let us show that if A = A1 + A2 is a vertex and L is an oriented
line that touches K exactly at A (so that K \ {A} lies on its positive side),
then A1 and A2 are compatible with respect to the line L. Indeed, let Lj
denote the lines through Aj that are parallel to L. In the contrary case,
one of the vertices Aj , say A1 is adjacent to an edge E1 that does not lie
in the positive half-plane with respect to the line L1. It is clear that the
sum E1 +A2 ⊂ K does not lie in the positive half-plane with respect to the
oriented line L, - a contradiction with the assumption that the complement
K \ {A} lies in the latter half-plane. The statement of the proposition on
vertices is proved. If a vertex A1 is adjacent to an edge E1, and A2 is a
vertex of the body K2 compatible with A1, then the sum E1 +A2 is an edge
of the sum K, and all the edges of the body K are obtained in this way (and
also with interchanged K1 and K2). This follows from the above argument
and definition and finishes the proof of the proposition. 2

Now for the proof of Proposition 5.58 it remains to prove the equality
Kfg = Kf + Kg: its second and third statements will then follow from
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Proposition 5.61. Indeed, it follows from definition that Kfg ⊂ Kf +Kg. To
show that the two latter polygons coincide, it suffices to show that Kfg con-
tains the vertices of the sum Kf +Kg: the sums A = Af +Ag of compatible
vertices Af ∈ Kf and Ag ∈ Kg. Fix a pair of compatible vertices Af and
Ag. Let L be the corresponding line that touches K exactly at A. We have
to show that the product fg contains the monomial xA, x = (z, w), in the
multi-index notation. The functions h = f, g contain the monomials xAh ,
and the product of the latter monomials is xA. We have to show that it does
not cancel out with other terms of the product fg: with other products of
Taylor monomials in f and g different from the above pair (xAf , xAg). But
the multidegrees of the other products, which are represented by points in
K = Kf + Kg, do not coincide with A: moreover, they lie in the posi-
tive half-plane with respect to the line L, as does K \ {A}, see the proof
of Proposition 5.61. Therefore, the monomial xA does not cancel out and
hence, A ∈ Kfg. This proves Proposition 5.58. 2

Proof of Theorem 5.56. Let f =
∏N
j=1 f

rj
j be a germ of holomorphic

function represented as a product of powers of its irreducible factors. Then

Kf =
∑
j

rjKfj .

Each edge of the boundary of the latter sum is parallel to an edge of some
of ∂Kfj and vice versa: for every j each edge in ∂Kfj is parallel to an edge
in ∂Kf . Both statements follow from Proposition 5.58 by induction in the
number of irreducible factors. This proves Theorem 5.56. 2

6 Generalized Maximum Principle. Automorphisms

6.1 Generalized Maximum Principle and Schwarz Lemma

We will be dealing with norms || || on Cn positive on non-zero vectors and
satisfying the following conditions:

||v|| ≥ 0, ||v|| = 0 if and only if v = 0;

||v||+ ||w|| ≥ ||v + w|| for every v, w ∈ Cn; (6.1)

||λv|| = |λ|||v|| for every λ ∈ C. (6.2)

The unit ball centered at 0 in a given norm || || will be denoted by

B|| || = {||v|| < 1}.
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Condition (6.1) is equivalent to the convexity of the unit ball in the norm
under consideration. For a norm homogeneous under multiplication by real
positive numbers (||sv|| = s||v|| for s > 0) condition (6.2) is equivalent to
its invariance under multiplication by complex numbers with unit module.

Example 6.1 The Euclidean norm and the maximum module norm

||z||E =
√
|z1|2 + · · ·+ |zn|2, ||z||max = max

j
|zj |

satisfy conditions (6.1) and (6.2).

Theorem 6.2 (Generalized Maximum Principle). Let U ⊂ C be a
connected domain, f : U → Cn be a holomorphic mapping. Let || || be a
norm on Cn, and let the function ||f(z)|| achieve its maximal value at some
point P ∈ U . Then ||f(z)|| ≡ const.

In the proof of Theorem 6.2 we use the following general properties of
convex sets and real hyperplanes in Cn.

Theorem 6.3 Let C ⊂ Rn be a convex subset. For every point x ∈ ∂C there
exists a hyperplane through x that does not intersect the interior Int(C). Or
equivalently, the interior of every convex subset is an intersection of half-
spaces.

Proof (sketch). It suffices to prove Theorem 6.3 for a bounded convex
set: the intersection CN of the set C with a ball centered at 0 of radius N .
Namely, let HN be hyperplanes through x that do not intersect Int(CN ).
Then we take H to be the limit of a converging subsequence HNk in the
Grassmanian space of hyperplanes (which is compact).

Without loss of generality we consider that C is compact and Int(C) 6= ∅.
First we prove Theorem 6.3 in the case, when C is a polytope: the convex

hull of a finite set. Afterwards we approximate C by polytopes and pass to
the limit. Namely, for every ε > 0 fix a finite ε-net Sε ⊂ C. Let Σε ⊂ C
denote its convex hull, which is a polytope. For every xε → ∂Σε there exists
a hyperplane Hε through xε satisfying the statement of the theorem for the
convex set Σε. Passing to the limit, as ε → 0 and xε → x, we take H to
be the limit of a convergence subsequence Hεk . The hyperplane H passes
through x and does not intersect Int(C). This proves Theorem 6.3. 2

Proposition 6.4 1) Every real hyperlane H ⊂ Cn passing through the ori-
gin (that is, a vector subspace over R in Cn ' R2n of real codimension one)
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contains a complex vector subspace HC of real codimension one in H. This is
the intersection of the hyperplane H with its image under the multiplication
by the imaginary unity i.

2) This is the unique maximal complex subspace in H: every other com-
plex vector subspace in H is contained in HC.

3) There exists a complex linear functional η : Cn → C such that

HC = {η = 0}, H = {Re η = 0}. (6.3)

Proof The intersection HC := H ∩ (iH) is invariant under the multipli-
cation by i, since i2 = −1. Hence, it is a complex vector subspace. Each
complex vector subspace in H is clearly contained in HC, being also invari-
ant. The subspace HC has real codimension two, being even-dimensional
intersection of real-codimension one subspaces. Hence, it has complex codi-
mension one, and it is the kernel of a complex linear functional η : Cn → C.
The image η(H) is a line (a vector subspace over R) ` ⊂ C. Multiplying η
by complex number one can achieve that ` being the imaginary axis. Then
H = {Re η = 0}, by construction. The proposition is proved. 2

Proof of Theorem 6.2. In the case, when f(P ) = 0, the statement of the
theorem is obvious. Thus, we consider that f(P ) 6= 0. Fix a hyperplane H
through the image f(P ) that does not intersect the ball B = {||w|| < R},
R := ||f(P )||: it exists by Theorem 6.3. Let H̃ denote its translation image
passing through the origin. Let H̃C ⊂ H̃ denote the corresponding maximal
complex vector subspace from the above proposition. Let HC ⊂ H denote
its translation image. Let η : Cn → C denote the complex linear functional
such that H̃C = {η = 0}, H̃ = {Re η = 0}. Then H = {Re η = c}, c ∈ R.
Without loss of generality we can and will consider that Re η|B < c. One
can achieve this by multiplying η by ±1, since H is disjoint from the ball
B. The function g(z) := η ◦ f(z) is holomorphic on U ,

Re g(z) ≤ c for all z ∈ U, Re g(P ) = c.

This together with Openness Principle for holomorphic functions and con-
nectivity of U implies that g(z) ≡ const, Re g(z) ≡ c. That is, f(z) ∈ H for
all z ∈ U . Thus, f(z) ∈ B = {||w|| ≤ ||f(P )||} and at the same time f(z)
lies in the hyperplane H disjoint from B. Therefore, f(z) ∈ ∂B for all z,
hence ||f(z)|| ≡ ||f(P )||. Theorem 6.2 is proved. 2

Lemma 6.5 (Generalized Schwarz Lemma). Let || ||1, || ||2 be norms
on Cn and Cm respectively. Let f : B|| ||1 → B|| ||2 be a holomorphic mapping
such that f(0) = 0. Then ||f(z)||2 ≤ ||z||1.
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Proof Fix a complex line L ⊂ Cn through the origin. Its intersection with
the unit ball B|| ||1 is a disk D ⊂ L centered at zero. Let t be a linear
complex coordinate on L in which D be the unit disk. Thus, the restriction
to L of the norm || ||1 coincides with the function |t|. Consider the restriction
of the mapping f to D as a holomorphic vector function in t. The function
g(t) = f(t)

t is holomorphic on the unit disk D, since f(0) = 0. There are two
possible cases.

Case 1): ||g(t)||2 ≤ 1 for every t ∈ D. This is equivalent to the inequality
of the lemma for the restriction of the function f to D.

Case 2): ||g(t)||2 > 1 at some point t. The upper limit of the func-
tion ||g(t)||2, as |t| → 1, is no greater than one, since ||f ||2 ≤ 1 on D,
by assumption. Therefore, it takes its maximum greater than one at some
point t0 ∈ D. Hence, ||g(t)|| ≡ r > 1 on D, by Theorem 6.2. That is,

||f(t)||2 ≡ r|t|, r > 1, and ||f(r−
1
2 )||2 = r

1
2 > 1. This contradicts the con-

dition of the lemma, which implies that ||f ||2 takes values less than one on
the disk D. Hence, this case is impossible. Lemma 6.5 is proved. 2

Corollary 6.6 For every norm on Cn as at the beginning of the section
each biholomorphic automorphism of the corresponding unit ball that fixes
the origin preserves the norm: ||f(z)|| ≡ ||z||.

6.2 Automorphisms of polydisk

By Aut(D1) we denote the group of conformal automorphisms of the unit
disk. Recall that each of them extends to a conformal automorphism of the
Riemann sphere and is given by fractional-linear transformation

z 7→ az + b

b̄z + ā
, |a|2 − |b|2 > 0.

Remark 6.7 The group Aut(D1) acts transitively on D1.

Theorem 6.8 The group of automorphisms of the unit polydisk ∆ = ∆(1,...,1) ⊂
Cn is generated by the product (Aut(D1))n and the symmetric group Sn
acting by permutations of coordinate components: each automorphism is a
composition of an element of the above product and a permutation.

Remark 6.9 In fact the group Aut(∆) is the semidirect product of the
group (Aut(D1))n and the permutation group Sn, with respect to the action
of the group Sn on (Aut(D1))n by conjugations.
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Proof It suffices to prove the statement of the theorem for every automor-
phism g ∈ Aut(∆) fixing the origin: each automorphism of the polydisk can
be corrected to fix the origin by replacing it by its post-composition with
an element of the group (Aut(D1))n, see Remark 6.7.

Proposition 6.10 Let g ∈ Aut(∆) fix 0. Then g is the composition of
a permutation of coordinates and their multiplications by complex numbers
with unit modules.

Proof For every j = 1, . . . , n let Vj ⊂ ∆ denote the subset of those points
z = (z1, . . . , zn) for which |zj | > |zs| for every s 6= j. The union ∪nj=1Vj is
an open and dense subset in ∆. One has ||z||max ≡ |zj | on Vj , by definition.
Let k ∈ {1, . . . , n} be an index such that Vk ∩ g(Vj) 6= ∅, or equivalently,
Ujk = Vj ∩ g−1(Vk) 6= ∅. One has ||g(z)||max ≡ ||z||max, by Corollary 6.6.
Therefore, |zk(g(z))| ≡ |zj | on Ujk. Thus, the ratio of two holomorphic
functions zj and zk ◦ g on the open set Ujk is holomorphic and has module
identically equal to one. Therefore the latter ratio is locally constant, by
Opennes Principle for holomorphic functions. Thus, there exists a θ ∈ R
such that zk ◦ g ≡ eiθzj on an open subset in ∆, and hence, on all of
∆, by uniqueness of analytic extension. Finally, for every j = 1, . . . , n
there exist a k = k(j) and a θj ∈ R such that zk(j) ◦ g ≡ eiθjzj . One has
k(j1) 6= k(j2) whenever j1 6= j2. Indeed, otherwise, if k = k(j1) = k(j2),
then zk ◦ g ≡ eiθj1zj1 ≡ eiθj2zj2 , zj1 ≡ ei(θj2−θj1 )zj2 , - a contradiction. Thus,
the mapping j 7→ k(j) is a permutation. Proposition 6.10 is proved. 2

The proposition immediately implies the statement of Theorem 6.8. 2

6.3 Cauchy inequality. Henri Cartan’s theorem on automor-
phisms tangent to identity

Definition 6.11 A complex manifold is called a domain of bounded type, if
it is biholomorphic to a bounded domain in Cn.

Here we prove the following theorem

Theorem 6.12 (Henri Cartan). Let B be a domain of bounded type,
O ∈ B, f : B → B be a biholomorphic automorphism such that f(O) = O
and df(O) = Id. Then f = Id.

In the proof of Cartan’s Theorem we use Cauchy inequality, which follows
immediately from Cauchy Integral Formula.
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Theorem 6.13 (Cauchy Inequality). Let f : ∆r → C be a holomorphic
function on a polydisk of multiradius r = (r1, . . . , rn), and let |f | ≤ R on
∆r. Let m ∈ (Z≥0)n, and let cm be the Taylor coefficient of the function f
at 0 at the monomial zm. Then

|cm| ≤
R

rm
. (6.4)

Proof Without loss of generality we consider that f is holomorphic on the
closed polydisk ∆r, replacing r by λr, 0 < λ < 1, and passing to the limit,
as λ→ 1. One has

cm =

(
1

2πi

)n ∮
|ζ1|=r1

· · ·
∮
|ζn|=rn

f(ζ)

ζmζ1 . . . ζn
dζn . . . dζ1. (6.5)

Indeed, in the Laurent series of the function f(z)
zmz1...zn

each monomial different
from cm

z1...zn
contains at least one coordinate zj in a power different from −1.

Hence, its integral over the boundary ∂Drj vanishes, since the residue in
the coordinate zj vanishes. This implies that in the integral in the right-
hand side of the formula (6.5) the only nontrivial contribution is given by
the monomial cm

ζ1...ζn
, and the integral of the latter equals (2πi)ncm. This

proves (6.5). The restriction to the product of the boundaries ∂Drj of the

subintegral expression in (6.5) has module no greater than R
rmr1...rn

, while
the product of lengths of boundaries is equal to (2π)nr1 . . . rn. This together
with (6.5) implies (6.4). 2

Proof of Theorem 6.12. Without loss of generality we consider that
B ⊂ Cn is a bounded domain, O is the origin and B contains the polydisk
∆ = ∆(1,1,...,1). Let R denote the minimal radius of the ball centered at the
origin that contains B. For every m ∈ (Z≥0)n let cm denote the coefficient
at zm in the Taylor series at 0 of the mapping f . Suppose the contrary:
f 6= Id, that is, the Taylor series of the mapping f contains some nonlinear
terms. Set

d = min{|m| = |m1|+ · · ·+ |mn| | m ∈ (Z≥0)n, cm 6= 0, |m| ≥ 2},

Pd(z) =
∑
|m|=d

cmz
m.

The polynomial Pd(z) is homogeneous nonzero of degree d. Consider the
iterations fk = f ◦ f ◦ · · · ◦ f . For every k ∈ N one has

fk(z) = z + kPd(z) +O(|z|d+1) :
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taking k-th iterate of a mapping tangent to the identity (i.e., fixing 0 and
having identity derivative there) multiplies lower nonlinear terms by k. This
follows immediately from the fact that the Taylor series of the composition of
mappings is the formal composition of their Taylor series and straightforward
calculation. Therefore, for every m with |m| = d and cm 6= 0 for every
k ∈ N the coefficient at zm of the k-th iterate fk equals kcm. Thus, it
becomes arbitrarily large, as k is large enough. On the other hand, the
latter coefficients kcm should be no greater than R for all k, by Theorem
6.13 and since all the iterates fk are holomorphic on ∆ and take values in
the ball of radius R centered at the origin. The contradiction thus obtained
proves Theorem 6.12. 2

6.4 Automorphisms of ball

The next theorem describes the automorphisms of the unit ball B. To state
it, let us consider the subgroup U(1, n) ⊂ GLn+1(C) acting naturally on
the space Cn+1 with the coordinates z̃ = (z̃0, . . . , z̃n) that preserves the
indefinite Hermitian form

Q(z̃) = |z̃0|2 −
n∑
j=1

|z̃j |2.

Let PU(1, n) denote its projectivization: its image under the natural pro-
jection GLn+1(C)→ PGLn+1(C) of factorization by C∗. Set

K = {Q > 0} ⊂ Cn+1, Σ = {v ∈ Cn+1 | Q(v) = 1} ⊂ K.

The images of the sets K and Σ under the tautological projection Cn+1 \
{0} → CPn coincide with the Euclidean unit ball B in the affine chart
Cn = {(1 : z1 : · · · : zn)}. The group U(1, n) preserves both K and Σ.
Therefore, each element of the group PU(1, n) yields an automorphism of
the unit ball.

Theorem 6.14 The group of automorphisms of the unit ball B ⊂ Cn coin-
cides with the group PU(1, n): each its biholomorphism is the restriction to
B of an element of the group PU(1, n).

The starting point of the proof of Theorem 6.14 is the following imme-
diate corollary of Schwarz Lemma and Cartan’s Theorem.

Lemma 6.15 Every automorphism of the unit ball in Cn that fixes the ori-
gin is a unitary transformation.
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Proof Each automorphism f(z) of the unit ball fixing the origin preserves
the standard Euclidean norm: ||f(z)|| ≡ ||z||, by Schwarz Lemma applied to
f and to its inverse. Therefore, its differential df(0) is a unitary operator.
Without loss of generality we can and will consider that df(0) = Id: one
can achieve this by taking a post-composition with a unitary transformation.
Then f = Id, by Cartan’s Theorem. This proves the lemma. 2

Remark 6.16 The group U(n) of unitary transformations of the affine
chart Cn embeds naturally into PU(1, n). This follows from the fact that it
lifts to the subgroup in U(1, n) fixing the z̃0-axis and the coordinate z̃0 and
acting as the unitary group U(n) on the coordinates (z̃1, . . . , z̃n).

Lemma 6.17 The group PU(1, n) acts transitively on the unit ball.

Proof It suffices to show that U(1, n) acts transitively on the unit sphere
Σ in the pseudo-hermitian metric Q. That is, given two vectors u, v ∈ Cn+1

with Q(u) = Q(v) = 1, let us show that there exists a transformation
g ∈ U(1, n) such that g(u) = v. Consider the orthogonal complements u⊥

and v⊥ with respect to the indefinite Hermitian form Q. One has u /∈ u⊥,
v /∈ v⊥, since Q(u) = Q(v) = 1 6= 0. The restriction to u⊥ of the form Q is
negative definite. Indeed, each indefinite Hermitian form has a well-defined
signature: the number of positive squares minus the number of negative
squares in a basis where its matrix is diagonal. The signature is independent
on the choice of diagonalizing basis. The signature of the form Q is equal
to 1 − n. Its restriction to u⊥ can be diagonalized: reduced to a sum of
squared moduli of coordinates with signs. Then the signature of the form
Q is equal to the signature of its restriction to u⊥ plus one (corresponding
to the vector u, where Q(u) = 1 > 0). This implies that the latter signature
of restriction to u⊥ equals −n, and thus, the latter restriction is negative
definite. Finally, the restrictions of the form Q to both u⊥ and v⊥ are
negative definite, and hence, can be transformed one into the other by a
complex linear transformation h : u⊥ → v⊥. The transformation g sending
u to v and coinciding with h on u⊥ is a linear automorphism preserving the
form Q, by construction, and hence, g ∈ U(1, n). The lemma is proved. 2

The two latter lemmas immediately imply Theorem 6.14.
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6.5 Introduction to complex dynamics: linearization theo-
rem in dimension one

Here and in the next subsection we give an introduction to local complex
dynamics given by a germ of biholomorphic transformation at a fixed point.
We prove linearization theorems in one and two dimensions for contracting
germs. Then we show that the attractive basin of an attracting non-resonant
fixed point of an injective mapping C2 → C2 is naturally biholomorphically
equivalent to C2. This yields a wide class of domains in C2 that are smaller
than C2 but biholomorphically equivalent to C2. This phenomena does not
occur in one dimension, by Riemann Mapping Theorem.

Theorem 6.18 Every germ of conformal mapping

f : (C, 0)→ (C, 0), f(z) = λz +O(z2), |λ| 6= 0, 1,

is conformally conjugated to its linear part. More precisely, there exists a
unique germ h : (C, 0)→ (C, 0), h(0) = 0, h′(0) = 1, such that

λh = h ◦ f. (6.6)

Proof Without loss of generality we consider that 0 < |λ| < 1 (replacing f
by f−1, if this is not the case). Equation (6.6) is equivalent to the statement
that h is a fixed point of the transformation

L : h 7→ λ−1h ◦ f.

We will show that L is a contraction in appropriate complete metric space
and hence, has a unique fixed point there.

Fix a µ > 0 such that

0 < µ2 < |λ| < µ < 1. (6.7)

Fix an r > 0 such that f is holomorphic on Dr and

|f(z)| ≤ µ|z| whenever z ∈ Dr. (6.8)

In particular, (6.8) implies that f(Dr) ⊂ Dr.
For every function q(z) holomorphic on Dr and continuous on Dr such

that q(0) = q′(0) = 0 set

||q|| := sup
|z|≤r

|q(z)|
|z|2

.
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Let M denote the space of functions h holomorphic on Dr and continuous
on Dr such that

h(0) = 0, h′(0) = 1,

equipped with the distance dist(h1, h2) = ||h1 − h2||. This is a complete
metric space. Indeed, a sequence fundamental in the norm converges uni-
formly, by definition. Hence, its limit is holomorphic, by Theorem 1.11, and
vanishes at 0. The derivatives also converge uniformly in compact set to the
derivative of the limit, by Cauchy integral formula for the derivative and
convergence of the function. Therefore, the limit has unit derivative at 0.
Finally, the limit of a converging sequence is an element of the space M ,
and hence, M is complete.

Proposition 6.19 L(M) ⊂M .

Proof If h(0) = 0, then (Lh)(0) = 0 and (Lh)′(0) = h′(0). If h is holomor-
phic on Dr and continuous on Dr, then so is the composition h ◦ f , since f
is holomorphic on Dr and f(Dr) ⊂ Dr. This implies that L preserves the
space M and proves the proposition. 2

Proposition 6.20 ||Lh1 − Lh2|| ≤ ν||h1 − h2||, ν = |λ|−1µ2 < 1.

Proof The operator L being linear, it suffices to show that ||Lq|| ≤ ν||q||
for every q as above. One has

|(Lq)(z)|
|z2|

= |λ|−1 |q(f(z))|
|f(z)|2

|f(z)|2

|z|2
≤ |λ|−1||q||µ2,

by definition, (6.8) and since f(z) ∈ Dr whenever z ∈ Dr. This implies
that the norm of the image Lq is no greater than ν||q||. The proposition is
proved. 2

The two latter propositions together imply that L : M →M is a contrac-
tion. Hence, L has a unique fixed point h ∈M , which obviously represents a
conjugating germ we are looking for. Its uniqueness follows from the above
uniqueness of fixed point and the fact that the above argument holds for
every r small enough. This proves Theorem 6.18. 2

6.6 Linearization theorem in dimension two

Here we prove a linearization theorem for a germ F = (f1, f2) : (C2, 0) →
(C2, 0) of biholomorphic mapping at 0 with linear part of the type

dF (0) = Λ =

(
λ1 0
0 λ2

)
, 0 < |λ1|, |λ2| < 1.
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Definition 6.21 A matrix Λ as above (or a vector λ = (λ1, λ2)) is said to
be resonant, if it satisfies a relation of type

λj = λm = λm1
1 λm2

2 , m = (m1,m2) ∈ Z2
≥0, m1 +m2 ≥ 2,

which is called a resonance relation. If there are no resonance relations, then
Λ is called non-resonant.

Remark 6.22 If 0 < |λ1|, |λ2| < 1, then each resonance relation (if any)
takes the form λ1 = λk2, k ∈ N (up to permutation of indices), since in this
case |λm| < |λj |, whenever m1 +m2 ≥ 2 and mj > 0.

Theorem 6.23 Every germ F as above with non-resonant linear part is
biholomorphically conjugated to its linear part. More precisely, there exists
a unique biholomorphic germ H : (C2, 0) → (C2, 0), H(0) = 0, dH(0) = Id
such that

ΛH = H ◦ F. (6.9)

The proof of Theorem 6.23 is analogous to the above proof of Theorem
6.18. Equation (6.9) is equivalent to the statement that H is a fixed point
of the linear operator

L : H 7→ Λ−1H ◦ F.

First we replace F by its conjugate whose lower nonlinear terms have high
enough degree. Then we will show that L is a contraction in appropriate
complete metric space, which will imply the existence and uniqueness of
fixed point.

In this subsection for simplicity for every z ∈ C2 we set

|z| :=
√
|z1|2 + |z2|2.

Proposition 6.24 For every N ∈ N there exists a unique1 vector polyno-
mial HN : (C2, 0) → (C2, 0) with components of degree at most N with
HN (0) = 0, dHN (0) = Id such that

HN ◦ F ◦H−1
N (z) = Λz +O(|z|N+1). (6.10)

Proof Let us prove existence by induction in N .
Induction base: N = 1, HN = Id.

1Uniqueness was not proved during the lectures. Its proof is presented in these notes
for completeness
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Induction step. Let the statement of the proposition be proved for N =
k. Let us prove it for N = k+ 1. Let Hk = HN−1 be the germ given by the
induction hypothesis. Then

FN−1(z) := HN−1 ◦ F ◦H−1
N−1(z) = Λz + PN (z) +O(|z|N+1), (6.11)

PN (z) =

( ∑N
s=0 asz

s
1z
N−s
2∑N

s=0 bsz
s
1z
N−s
2

)
. (6.12)

We show that there exists a vector polynomial

hN (z) = z +QN (z), QN (z) =

( ∑N
s=0 αsz

s
1z
N−s
2∑N

s=0 βsz
s
1z
N−s
2

)

such that
hN ◦ FN−1 ◦ h−1

N (z) = Λz +O(|z|N+1). (6.13)

Then HN = hN ◦HN−1 satisfies (6.10). This will prove the induction step
and the existence statement.

Homological equation on the vector polynomial QN .
Claim 1. One has

FN (z) := hN ◦ FN−1 ◦ h−1
N (z) = FN−1 +QN (Λz)− ΛQN (z) +O(|z|N+1).

Proof By ' we denote equality modulo O(|z|N+1). One has

h±1
N (z) ' z ±QN (z), FN−1 ◦ h−1

N (z) ' FN−1(z)− ΛQN (z),

FN (z) ' hN (FN−1(z)− ΛQN (z)) ' FN−1(z)− ΛQN (z) +QN ◦ FN−1(z)

' FN−1(z)− ΛQN (z) +QN (Λz),

by construction. This proves the claim. 2

Equation (6.13) is equivalent to the equation

PN (z) +QN (Λz)− ΛQN (z) = 0, (6.14)

by (6.11) and the claim. Equation (6.14) is called the homological equation.
The coefficient at zs1z

N−s
2 of the first (second) component in its left-hand

side equals respectively

as + αs(λ
s
1λ

N−s
2 − λ1) = 0,

bs + βs(λ
s
1λ

N−s
2 − λ2) = 0.
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Note that the above expressions in the brackets (the multipliers at αs and
βs) are non-zero by non-resonance condition. Therefore, the latter equations
in αs and βs can be solved (and in a unique way), and the vector polynomial
QN constructed from their solutions αs, βs satisfies (6.14), by construction.
This proves the existence statement of the proposition.

Remark 6.25 The above argument shows that if Λ is nonresonant, then
the linear operator QN 7→ QN ◦ Λ− ΛQN is non-degenerate: a linear auto-
morphism of the space of homogeneous vector polynomials of degree N .

Let us prove uniqueness. Suppose the contrary: there are two vector
polynomials HN and H̃N of degrees no greater than N conjugating F to
Λz + O(|z|N+1) with HN (0) = H̃N (0) = 0, dHN (0) = dH̃N (0) = Id. Let
d ∈ N, d ≤ N , denote the smallest degree of nonzero terms in the difference
HN − H̃N . The compositional ratio H̃N ◦ H−1

N is equal to z + Qd(z) +
O(|z|d+1), where Qd 6≡ 0 is a homogeneous vector polynomial of degree d, by
construction. It conjugates FN (z) = Λz+O(|z|N+1) to a map with the same
asymptotics, by construction. Therefore, the vector polynomial z + Qd(z)
conjugates it to a map with asymptotics Λz + O(|z|d+1), since d ≤ N .
This together with Claim 1 and Remark 6.25 implies that Qd ≡ 0. The
contradiction thus obtained proves uniqueness. The proposition is proved.

2

Proof of Theorem 6.23. Without loss of generality we consider that
|λ1| ≤ |λ2|. Fix a µ > 0 such that

0 < |λ1| ≤ |λ2| < µ < 1. (6.15)

Let us choose a N ∈ N large enough so that

|λ1|−1µN < 1. (6.16)

Without loss of generality we consider that

F (z) = Λz +O(|z|N ).

One can achieve this by conjugation from the above proposition. We will be
looking for a linearizing conjugation of the type H(z) = z+O(|z|N ). Fix an
r > 0, such that F is holomorphic on the closed Euclidean ball Br of radius
r and

|F (z)| ≤ µ|z| whenever z ∈ Br. (6.17)

Here the norm is Euclidean. Let M denote the space of holomorphic map-
pings H : Br → C2 continuous on Br such that H(0) = 0, H(z) =
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z + O(|z|N ). For every holomorphic mapping Q : Br → C2 continuous
on Br with

Q(z) = O(|z|N ) as z → 0

set

||Q|| = sup
z∈Br

|Q(z)|
|z|N

.

The space M equipped with the distance d(H1, H2) = ||H1 − H2|| is a
complete metric space. The operator

L : H 7→ Λ−1H ◦ F

is a well-defined transformation of the space M to itself, since F (Br) ⊂ Br,
as in the previous subsection. Set

ν = |λ1|−1µN < 1.

Claim 2. One has ||LQ|| ≤ ν||Q|| for every Q as above.
Proof One has

|Λ−1Q ◦ F (z)|
|z|N

≤ |λ1|−1 |Q ◦ F (z)|
|F (z)|N

(
|F (z)|
|z|

)N
≤ λ−1

1 µN ||Q|| = ν||Q||,

as in the previous subsection. This implies the claim. 2

The claim implies that L : M → M is a contraction, and hence, it has
a unique fixed point. This finishes the proof of the existence in Theorem
6.23, as at the end of the previous subsection. For every N ∈ N the Taylor
polynomial of degree N of the linearizing conjugating map H is the unique
vector polynomial satisfying the statement of Proposition 6.24, by construc-
tion. Hence the Taylor series of the map H is uniquely defined, and thus,
H is unique. Theorem 6.23 is proved. 2

6.7 Polynomial automorphisms of C2. Fatou–Bieberbach do-
mains

Here we study polynomial automorphisms of C2 having an attractive fixed
point of non-resonant type. We show that its basin of attraction is biholo-
morphic to C2. In the case, when the basin is not all of C2 (e.g., if there is
another fixed point), it yields an example of domain in C2 different from C2

but biholomorphic to C2: the so-called Fatou-Bieberbach domain. This phe-
nomena is specific to higher dimensions and does not occur in dimension one:
every simply connected domain in C different from all of C is conformally
equivalent to the unit disk, not to C (Riemann Mapping Theorem).
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Example 6.26 Here are some examples of biholomorphic automorphisms
of C2:

1) The group of affine transformations generated by the group GL2(C)
and the group C2 of translations.

2) Elementary polynomial automorphisms of higher degrees:

Ψ :

(
z1

z2

)
7→
(
z1 + P (z2)

z2

)
.

3) Transcendental transformations, e.g., (z1, z2) 7→ (z1 + ez2 , z2).

Definition 6.27 A polynomial automorphism of C2 is a mapping C2 → C2

given by a vector polynomial whose inverse map exists and is also given by
a vector polynomial.

Theorem 6.28 (Jung, 1942).2 All the polynomial automorphisms form
a group generated by affine and elementary polynomial automorphisms, see
the above classes 1) and 2).

We will not present a proof of Jung Theorem, since it requires additional
techniques not covered by the cours.

Theorem 6.29 Let F : C2 → C2 be an injective holomorphic mapping that
has a fixed point at the origin. Let its linear part Λ = dF (0) be diagonal
non-resonant with nonzero eigenvalues lying in the unit disk. Consider the
attractive basin

V = {z ∈ C2 | F k(z)→ 0, as k → +∞},

which is an open subset in C2. Then the local linearizing germ H : (C2, 0)→
(C2, 0) from Theorem 6.23 conjugating F to Λ (i.e., satisfying (6.9)) extends
up to a biholomorphic isomorphism H : V ' C2.

Proof There exists a ball B centered at the origin such that F is well-
defined and holomorphic on B and F (B) ⊂ B (see the proof of Theorem
6.23). Set

V0 = B, V1 = F−1(V0), V2 = F−1(V1), . . .

One has
V0 ⊂ V1 ⊂ · · · = V,

2A beautiful geometric and relatively simple proof of Jung Theorem was obtained by
a French mathematician Stéphane Lamy: Lamy, S. Une prevue géométrique du théorème
de Jung. – Enseignement Mathématique, 48 (2002), 291–315.
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since by definition, each point of the basin V is eventually sent to B by some
iteration of the mapping F . We show that H extends holomorphically to
every Vk by induction in k.

The induction base is obvious: H is holomorphic on V0 = B.
Induction step. Let we have already shown that H is holomorphic on Vk

and satisfies (6.9) on Vk:
H = Λ−1H ◦ F. (6.18)

Let us prove that it extends holomorphically to Vk+1 and satisfies (6.18)
there. The latter composition Λ−1H ◦F is well-defined and holomorphic on
Vk+1, since F (Vk+1) ⊂ Vk, H is holomorphic on Vk (induction hypothesis)
and Λ is invertible. It coincides withH on Vk (induction hypothesis: equality
(6.18) on Vk). Therefore, it yields a holomorphic extension of the mapping
H to Vk+1, and equation (6.18) holds on Vk+1, since it holds on Vk and by
uniqueness of analytic extension. The induction step is over. Thus, H is
holomorphic on all of V and satisties (6.18) there. It follows by construction
that H : V → H(V ) is a biholomorphism. One has H(V ) = C2, since
H(Vk) = Λ−kH(V0), H(V0) contains a ball B̃ centered at the origin, and the
images Λ−k(B̃) exhaust all of C2. Theorem 6.29 is proved. 2

Corollary 6.30 Let F : C2 → C2 be an injective holomorphic mapping
(e.g., biholomorphic) that has a fixed point p whose linear part is diagonal
non-resonant and has all the eigenvalues nonzero and lying in the unit disk.
Then its attractive basin is biholomorphic to C2.

Definition 6.31 A Fatou–Bieberbach domain is a domain in Cn different
from Cn that is biholomorphically equivalent to Cn. (These domains exist
only for n ≥ 2.)

Remark 6.32 In the case, when, e.g., F has an additional fixed point q 6=
p, the attractive basin is different from all of C2, and hence, is a Fatou–
Bieberbach domain.

Seminar material, March 19, 2024. Let us construct a polynomial
automorphism with an attractive basin being a Fatou–Bieberbach domain.
Take polynomial automorphisms

f : (z1, z2) 7→ (z1 + z2, z2); g : (z1, z2) 7→ (z1, z2 + z2
1).

Let us choose a non-resonant diagonal matrix

Λ = diag(λ1, λ2), λ1 6= λ2, 0 < |λ1|, |λ2| < 1.
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Set

F (z) = Λg ◦ f(z) =

(
λ1(z1 + z2)

λ2(z2 + (z1 + z2)2)

)
.

Proposition 6.33 The attractive basin V of the fixed point 0 of the auto-
morphism F is biholomorphically equivalent to C2. The automorphism F
has an additional fixed point q 6= 0, hence V 6= C2 is a Fatou–Bieberbach
domain.

Proof The differential dF (0) has distinct eigenvalues λ1, λ2, and hence,
is conjugated to the diagonal matrix. Therefore, F is linearizable on V
(Theorems 6.23 and 6.29). The system of equations on fixed points has the
form {

z1 = λ1(z1 + z2)

z2 = λ2(z2 + (z1 + z2)2)
(6.19)

The first equation of the system is equivalent to each one of the two following
equations:

z1 =
λ1z2

1− λ1
, z1 + z2 = z2(1 +

λ1

1− λ1
) =

z2

1− λ1
.

Substituting the latter expression for z1 +z2 to the second equation in (6.19)
and dividing it by z2 yields

1 +
z2

(1− λ1)2
= λ−1

2 .

This yield a solution

z2 = (1− λ1)2(λ−1
2 − 1), z1 =

λ1z2

1− λ1
=
λ1

λ2
(1− λ1)(1− λ2)

of system (6.19), and hence, an additional fixed point of the mapping F .
The proposition is proved. 2

7 Domains of holomorphy. Holomorphic convex-
ity. Pseudoconvexity. Riemann domains.

Here we introduce the notion of domain of holomorphy: a domain that
admits a holomorphic function “everywhere non-extendable” through the
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boundary. We prove Oka’s Theorem, which says that being domain of holo-
morphy is equivalent to holomorphic convexity. Then we study local ver-
sions of convexity: pseudo-convexity, Levi convexity,... which appear to be
equivalent to the global holomorphic convexity.

In the present section for every r > 0 the polydisk centered at z0 with
multiradius (r, . . . , r) will be denoted by

∆(z0, r) = ∆r,...,r(z0) =
n∏
j=1

Dr(z0j).

7.1 Domains of holomorphy and holomorphic convexity. Oka’s
Theorem

Let D ⊂ Cn. For every z0 ∈ D set

r(z0) = max{r > 0 | ∆(z0, r) ⊂ D}

Definition 7.1 A domain D ⊂ Cn is called a domain of holomorphy, if
there exists a holomorphic function f : D → C such that for every z0 ∈ D
the function f |∆(z0,r(z0)) cannot be extended holomorphically to a bigger
polydisk ∆(z0, R), R > r(z0).

Example 7.2 The unit disk D1 ⊂ C is a domain of holomorphy. For exam-
ple, the modular function f : D1 → C (providing the universal covering over
C \ {0, 1,∞} and obtained by reflecting ideal hyperbolic triangles) does not
extend in the above sense, since it takes values arbitrarily close to 0, 1,∞ in
a neighborhood of every point of the boundary. One can show that every do-
main in C is a domain of holomorphy. Hartogs’ figure H ⊂ ∆ = ∆1,1 ⊂ C2

is not a domain of holomorphy, since every holomorphic function on H ex-
tends holomorphically to all of ∆ (Hartogs’ Theorem).

Everywhere below for a domain D ⊂ Cn by H(D) = O(D) we denote
the space of holomorphic functions on D.

The following definition generalizes the notion of convexity.

Definition 7.3 Let D ⊂ Cn be a domain, K ⊂ D be a subset. Fix a class
of functions F ⊂ H(D). Let us define the F -convex hull

K̂F = {z ∈ D | |f(z)| ≤ sup
x∈K
|f(x)| for every f ∈ F}.

The subset K is called F -convex, if K̂F = KF (then it is automatically
closed). The domain D is called F -convex, if the F -hull K̂F of every compact
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subset K b D is compact. In the case, when F = H(D) we call the above
F -convex objects holomorphically convex and denote K̂ = K̂H(D).

Remark 7.4 For every F ⊂ H(D) and every K ⊂ D the F -convex hull K̂F

is a closed subset in D containing K. The intersection of arbitrary family
of F -convex subsets in D is F -convex.

Remark 7.5 Let D ⊂ Cn, F1 ⊂ F2 ⊂ H(D). Then one has K̂F1 ⊃ K̂F2 ⊃
K̂ ⊃ K. This implies that every F1-convex subset K ⊂ D is always F2- and
H(D)-convex. Similarly, if D is F1-convex, then it is F2-and H(D)-convex.

Example 7.6 A holomorphic polyhedron in a domain D ⊂ Cn is a (finite
or infinite) intersection of its subsets Kj := {|fj(z)| < cj} (j ∈ J is some
index), where fj ∈ H(D). The subsets Kj are {fj}-convex, and hence
F -convex, where F = {fj | j ∈ J}. Therefore, their intersection is also
F -convex, and hence, holomorphically convex.

Remark 7.7 Every closed convex subset in Cn in the usual geometric sense
(e.g., a ball, or a polydisk) is convex with respect to the class Flin ⊂ H(Cn)
consisting of the exponents of the C-linear functionals. Hence, it is holo-
morphically convex (Remark 7.5). Indeed, recall that any closed convex
subset K ⊂ Rm is an intersection of closed half-spaces. For example, for
each point p ∈ ∂K we can take a hyperplane Hp through p which does not
cross Int(K). Then K is the intersection through p ∈ ∂K of appropriate
half-spaced bounded by Hp. Each closed half-space in Cn is defined by the
inequality Re l ≤ c, where l is a C-linear functional on Cn, as in the proof
of Theorem 6.2. Or equivalently, by the inequality |fl| ≤ ec, fl(z) = el(z).
Therefore, it is {fl}-convex, and hence, Flin-convex. Together with Remark
7.4, this implies that each closed convex subset in Cn (being an intersection
of closed half-spaces) is Flin-convex.

Remark 7.8 The H(D)-hull of a bounded subset K is bounded, since the
modules of the coordinate functions cannot achieve values on K̂ greater than
their suprema on K.

One of the main results in the theory is the following theorem.

Theorem 7.9 (Oka). A domain D ⊂ Cn is a domain of holomorphy, if
and only if it is holomorphically convex.

Corollary 7.10 The notion of domain of holomorphy is invariant under
biholomorphisms, as is the notion of holomorphic convexity.
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First we prove Oka’s Theorem. Afterwards (during the seminar) using
it we prove a logarithmic convexity criterium characterizing convergence
domains of power series.

The first step in the proof of Oka’s Theorem is the next theorem.

Theorem 7.11 Let a domain D be holomorphically convex. Then it is a
domain of holomorphy.

Proof In the proof of Theorem 7.11 we use the following proposition.

Proposition 7.12 Let D ⊂ Cn be an F - convex domain. Then it admits a
compact F -convex exhaustion3

K1 b K2 b · · · = D, K̂j,F = Kj .

Proof Consider an arbitrary compact exhaustion B1 b B2 b B3 b · · · =
D. Set

j1 = 1, K1 = B̂1,F = (̂B1)F , j2 = min{j | Bj c K1}, K2 = B̂j2,F , . . . .

The sets K1 b K2 b . . . form a compact F -convex exhaustion of the domain
D. The proposition is proved. 2

Fix an H(D)-convex exhaustion K1 b K2 b · · · = D and a sequence of
points wj ∈ Kj+1 \Kj accumulating to the boundary ∂D so that each open
set intersecting the boundary ∂D contains a limit point of the sequence wj :
such a sequence wj exists, since Kj form a compact exhaustion of the domain
D. We will construct a function f ∈ H(D) such that f(wj)→∞, as j →∞.
This will imply that f is non-extendable to polydisks ∆(z0, R), z0 ∈ D, R >
r(z0): such a polydisk intersects the boundary, and hence, would contain a
limit point of the sequence wj ; thus, f cannot extend holomorphically there.
To do this, we construct functions fj ∈ H(D), set

Fk =

k∑
j=1

fj ,

with the following properties:

|fj ||Kj < 2−j , |Fj(wj)| > 2j . (7.1)

3Recall that for any two subsets A,B ⊂ Cn the ”compact inclusion” A b B means
that A is a compact subset in IntB.
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and prove the above statements for the function

f =
+∞∑
j=1

fj .

We construct the functions fj inductively, taking f0 = 0 as the induction
base. Let we have already constructed fj for j ≤ l − 1. Let us construct
fl. The compact Kl is holomorphically convex, and wl ∈ Kl+1 \ Kl. This
implies that there exists a holomorphic function g : D → C such that

g(wl) = 1, |g||Kl < δ < 1 for some δ ∈ (0, 1).

Set
fl = (

g√
δ

)N ,

where N is chosen large enough so that

δ
N
2 < 2−l, |fl(wl)| = δ−

N
2 > 2l + |Fl−1(wl)|.

The first inequality implies that |fl||Kl < 2−l. The second one implies that

|Fl(wl)| ≥ |fl(wl)| − |Fl−1(wl)| > 2l.

The induction step is over. The functions fj satisfying (7.1) are constructed.
The first inequality in (7.1) together with Weierstrass Convergence Theorem
imply that the series f =

∑+∞
j=1 fj converges uniformly on compact subsets

in D, and the limit f is holomorphic on D. For every l ∈ N one has

Fl(wl) > 2l, fj(wl) < 2−j for every j ≥ l + 1.

The first inequality follows from (7.1). The second one follows from the first
inequality in (7.1) and the inclusion wl ∈ Kl+1. Therefore,

|f(wl)| ≥ |Fl(wl)| −
∑
j≥l+1

|fj(wl)| ≥ 2l−1, f(wl)→∞, as l→∞.

This proves Theorem 7.11. 2
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7.2 Material of seminar. Logarithmic convexity characteri-
zation of convergence domains of power series

Definition 7.13 A Reinhardt domain in Cn (centered at the origin) is a
domain invariant under the Tn-action by coordinatewise rotations around
the origin.

We consider the map

λ : Cn → Rn, z 7→ (ln |z1|, . . . , ln |zn|).

Definition 7.14 A Reinhardt domain is logarithmically convex, if the image
λ(D) ⊂ Rn is convex.

Example 7.15 We already know that the convergence domain of a power
series based at the origin is a Reinhardt domain containing the origin.

On the seminar we have proved the following theorem.

Theorem 7.16 A Reinhardt domain is a convergence domain for a power
series, if and only if it contains the origin and is logarithmically convex.

Sketch of proof. Step 1. A convergence domain is a logarithmically
convex Reinhardt domain.

Step 2. A logarithmically convex Reinhardt domain containing the origin
is a union of polydisks centered at the origin. Or equivalently, its logarithmic
image (which is a convex subset in Rn containing at least one negative
quadrant) is a union of negative quadrants.

Step 3. A logarithmically convex Reinhardt domain D containing the
origin is holomorphically convex. Hence, it is a domain of holomorphy of a
function f , by the proved part of Oka’s Theorem. This together with Step 2
and Abel’s Lemma implies that this is the convergence domain of the Taylor
series of the function f .

Proof of Step 3. Consider a closed convex subset in Rnx1,...,xn whose
interior is a union of negative quadrants. Then it is the intersection of
half-spaces defined by inequalities of the type

∑n
j=1 ajxj ≤ c with aj ≥ 0,

aj ∈ Q. Multiplying the latter inequality by a natural number (product of
denominators of the rational numbers aj) and substituting xj = ln |zj |, we
get an equivalent inequality of the type |zm| = |zm1

1 . . . zmnn | ≤ C.
First consider the case, when D is bounded. Set Dε := (1− ε)D, where

ε ∈ (0, 1) is small enough. One has Dε b D, and Dε is F -convex, where F is
the class of all the monomials zm, by the above discussion, Remark 7.4 and
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the arguments from Remark 7.7. Any compact subset K b D is contained
in Dε for every ε small enough. Hence, its F -convex hull is also contained
there, and thus, is compact. This implies that D is F -convex, and hence,
holomorphically convex (Remark 7.5).

Consider now the case, when D is unbounded. Fix an arbitrary compact
subset K b D and a polydisk ∆r containing K. The intersection D∩∆r is a
logarithmically convex bounded Reinhardt domain. Hence, it is F -convex,
by the above discussion. Therefore, the F -convex hull of the set K is a
compact subset in D ∩∆r. This proves F -convexity of the domain D, and
hence, its holomorphic convexity.

7.3 End of proof of Oka’s Theorem: holomorphic convexity
implies being domain of holomorphy

Theorem 7.17 Let D ⊂ Cn be a domain of holomorphy. Then it is holo-
morphically convex.

In the proof of Theorem 7.17 we use the following notation and theorem.
For every subset K ⊂ D set

ρ(K, ∂D) = inf{r(z0) | z0 ∈ K}.

Theorem 7.18 (Cartan–Thullen). Let D ⊂ Cn, K b D be a compact
subset, σ = ρ(K, ∂D). Then for every z0 ∈ K̂ every function f ∈ H(D)
extends holomorphically from z0 to the polydisk ∆(z0, σ).

Proof Fix a z0 ∈ K̂. To show that the function f is holomorphic on
∆(z0, σ), we show that its Taylor series converges uniformly on compact
subsets in ∆(z0, σ). To do this, we estimate its Taylor coefficients at z0 by
using Cauchy Inequality and convexity inequality. Fix a 0 < δ < σ and a
function f ∈ H(D). For every point t ∈ D and every k ∈ Zn≥0 let

ck(t) =
1

k1! . . . kn!

∂|k|

∂zk
f(t)

denote the Taylor coefficient at (z − t)k of the function f at t. One has

|∂
|k|

∂zk
f(z0)| ≤ sup

K
|∂
|k|

∂zk
f |,

since z0 ∈ K̂ and by the H(D)-convex hull inequality applied to the above
partial derivative instead of the function f . This implies that

|ck(z0)| ≤ sup
t∈K
|ck(t)|, (7.2)
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For every t ∈ K one has r(t) ≥ σ > δ, by definition. Therefore,

Kδ := ∪t∈K∆(t, δ) ⊂ D

is a compact subset. Set M = supKδ |f |. One has

|ck(t)| ≤
M

δ|k|
for every t ∈ K,

by Cauchy Inequality. Hence, ck(z0) ≤ M
δ|k|

, by (7.2). This together with
Abel’s Lemma implies that the Taylor series at z0 of the function f converges
in ∆(z0, δ) uniformly on compact subsets. The above convergence takes
place in the polydisk ∆(z0, σ), since δ can be chosen arbitrarily close to σ.
Hence, f extends holomorphically there. Theorem 7.18 is proved. 2

Proof of Theorem 7.17. Let D be a domain of holomorphy of a function
f . Let K b D be an arbitrary compact set, σ = ρ(K, ∂D). For every z0 ∈ K̂
the function f extends holomorphically to ∆(z0, σ), by Theorem 7.18. This
implies that σ ≤ r(z0), by the definition of domain of holomorphy. Or
equivalently,

r(z0) ≥ ρ(K, ∂D) for every z0 ∈ K̂. (7.3)

Finally, the gap between the subset K̂ ⊂ D and ∂D is bounded from below
by ρ(K, ∂D), and K̂ is a bounded closed subset in D, see Remark 7.8. Hence,
K̂ is compact. Theorem 7.17 is proved. 2

Proof of Theorem 7.9. Theorem 7.9 follows immediately from Theorems
7.11 and 7.17. 2

Corollary 7.19 Let D ⊂ Cn be a domain of holomorphy (or equivalently,
holomorphically convex). Then for every compact subset K b D one has

ρ(K̂, ∂D) = ρ(K, ∂D).

Proof The corollary follows immediately from inequality (7.3) and the
obvious inequality ρ(K̂, ∂D) ≤ ρ(K, ∂D), which follows from the inclusion
K ⊂ K̂. 2

7.4 Continuity Principle. Levi convexity

Definition 7.20 A domain D ⊂ Cn is locally connected at its boundary
point ζ ∈ ∂D, if there exists an arbitrarily small neighborhood U = U(ζ) ⊂
Cn such that the intersection U∩D is connected. If this holds for every point
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ζ ∈ ∂D, then D is said to be locally connected at the boundary. A domain
D locally connected at a point ζ ∈ ∂D is said to be holomorphically non-
extendable at ζ, if there exist a neighborhood U = U(ζ) ⊂ Cn as above and a
holomorphic function f : U∩D → C that does not extend holomorphically to
ζ. IfD is locally connected at the boundary, we say thatD is holomorphically
non-extendable, if it is holomorphically non-extendable at each point of its
boundary.

Remark 7.21 A domain of holomorphy locally connected at the boundary
is obviously holomorphically non-extendable. The converse statement was
a problem stated by Levy and solved by Oka.

Theorem 7.22 (Oka). A domain in Cn locally connected at the bound-
ary is a domain of holomorphy, if and only if it is holomorphically non-
extendable.

Example 7.23 The complement V = C2 \ BR to the closed ball BR is
holomorphically extendable at each point ζ ∈ ∂V = ∂BR. Indeed, without
loss of generality let us consider that ζ is the north pole (0, 1) (making
a rotation). Take a polydisk ∆ = ∆R1,R2(ζ) ⊂ C2 centered at ζ where
R1 is much bigger than R2 so that there exists a r1 ∈ (0, R1) for which
A := {r1 < |z1| < R1} × DR2(1) ⊂ ∆ lies outside the ball BR, i.e., in
V ∩ ∆. The union H := A ∪ B with B := DR1 × {|z2| > 1} ⊂ ∆ ∩ V is
a Hartogs figure in ∆. Hence, every function holomorphic on H extends
holomorphically to all of ∆, including ζ.

The above extendability is due to the fact that there is a sequence of
embedded ”disks” limiting to a disk S (in the above example S = {0} ×
Dσ) whose boundary is contained in the domain V under consideration and
whose some interior point lies in ∂V . We will prove a theorem stating that
presence of limiting embedded “disks” as above is basically the only reason
for holomorphic extendability of a domain to its boundary point.

The next theorem states that presence of limiting embedded “disks” as
above is basically the only reason for holomorphic extendability of a domain
to its boundary point. To state it, let us introduce the following notions.

Definition 7.24 Let n > r ≥ 1. Let W ⊂ Cr be a domain with compact
closure, φ : W → Cn be an injective holomorphic mapping, whose differential
has maximal rank r at each point. The image

S = φ(W )
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is called a compact holomorphic surface.

Recall that for every subset K ⊂ Cn and each δ > 0 we set

Kδ = ∪t∈K∆(t, δ).

Definition 7.25 A sequence of subsets Mk ⊂ Cn converges to a closed
subset M ⊂ Cn, if for every ε > 0 there exists a N > 0 such that for every
k > N one has

Mk ⊂M ε and M ⊂M ε
k .

Theorem 7.26 (Behnke–Sommer Continuity Principle). Let D ⊂
Cn, Sk ⊂ D be a sequence of compact holomorphic surfaces converging to a
subset S ⊂ Cn whose boundaries ∂Sk converge to a compact subset Γ b D.
Then for every point z0 ∈ S there exists a σ > 0 such that for every sequence
of points zk ∈ Sk ∩∆(z0, σ) converging to z0, as k → ∞, the germ at zk of
every holomorphic function f : D → C extends holomorphically to ∆(z0, σ).
See Fig. 2.
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Figure 2: Converging compact holomorphic surfaces Sk and their limit S.

Proof Let us choose an auxiliary open subset G, Γ b G b D: the closure
G is a compact subset in D and Γ is a compact subset in G. Set

r = ρ(G, ∂D).

There exists a N > 1 such that for every k > N one has ∂Sk ⊂ G. Therefore,
for those k every holomorphic function f : D → C satisfies the inequality

sup
Sk

|f(z)| = sup
∂Sk

|f(z)| ≤ sup
G
|f(z)|.
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The first equality follows from the Maximum Principle applied to the re-
striction of the function f to the surface Sk. The latter inequality implies
that Sk ⊂ Ĝ = ĜH(D) for every k > N . Therefore, for those k for every
zk ∈ Sk the function f extends holomorphically to ∆r(zk) (Cartan–Thullen

Theorem 7.18.) For every k large enough one has S ⊂ S
r
2
k , hence S

r
2 ⊂ Srk,

by convergence. This implies the statement of the theorem for σ = r
2 . 2

Remark 7.27 One can show (slightly modifying the above proof) that the
statement of the theorem holds for every σ < ρ(Γ, ∂D).

Corollary 7.28 1) Let in the condition of Theorem 7.26 the domain D be
locally connected at the boundary, and let S contain a point z0 ∈ ∂D. Then
D is not a domain of holomorphy.

2) Let in addition to the above, z0 be an isolated point of intersection
S ∩ ∂D. Then D is holomorphically extendable to z0. See Fig. 2.

Definition 7.29 Let D ⊂ Cn be a domain, ζ ∈ ∂D. We say that D is
Levy- (or L-) convex at ζ, if for every compact holomorphic surface S ⊂ Cn
through ζ with ∂S ⊂ D for every sequence Sk of compact holomorphic
surfaces converging to S with ∂Sk → ∂S one has Sk \ D 6= ∅, whenever
k is large enough. We say that D is locally L-convex at ζ, if there exists
an arbitrarily small neighborhood U = U(ζ) ⊂ Cn such that the above
statement holds with D replaced by D ∩ U . We say that D is (locally)
L-convex, if so it is at each its boundary point.

Remark 7.30 L-convexity at a point ζ ∈ ∂D obviously implies local L-
convexity at ζ.

Proposition 7.31 1) Every domain of holomorphy is L-convex.
2) If D is holomorphically non-extendable at a point ζ ∈ ∂D, then D is

locally L-convex there.

Proof Suppose the contrary: a domain of holomorphy D is not L-convex
at a ζ ∈ ∂D. Then there exist a compact holomorphic surface S ⊂ Cn,
ζ ∈ S, ∂S ⊂ D and a sequence Sk → S of compact holomorphic surfaces
Sk ⊂ D converging to S with boundaries. Then each holomorphic function
on D extends holomorphically to ζ (Continuity Principle). Thus, D is not a
domain of holomorphy. The contradiction thus obtained proves Statement 1)
of the proposition. The proof of Statement 2) is analogous, with D replaced
by D ∩ U , where U = U(ζ) is a small enough neighborhood from the above
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definition such that the function f that does not extend holomorphically to
ζ is holomorphic on U ∩D. 2

The next theorem provides a global converse statement.

Theorem 7.32 (Oka). A domain D ⊂ Cn is holomorphically non-extendable
(at all the points of its boundary), if and only if it is L-convex.

Theorem 7.33 (Sufficient condition for local L-convexity). Let D ⊂
Cn be a domain, ζ ∈ ∂D. Let there exist a neighborhood U = U(ζ) ⊂ Cn
and a function f holomorphic on U such that

f(ζ) = 0, f |D∩U 6≡ 0.

Then D is holomorphically non-extendable (hence, locally L-convex) at ζ.

Proof The function f−1 = 1
f is holomorphic on U ∩D, f−1(ζ) =∞. This

implies that the function f−1(w) does not extend holomorphically to ζ, by
definition. Therefore, D is not holomorphically extendable to ζ, and hence,
it is L-convex there. The theorem is proved. 2

7.5 Material of seminar

As an application of the Continuity Principle, let us prove the following
lemma on erasing real singularities of holomorphic functions in two complex
variables.

Lemma 7.34 Let D ⊂ C2 be a domain intersecting R2. Each holomorphic
function f : D \ R2 → C extends holomorphically to all of D.

Proof It suffices to treat the case, when D = ∆δ,δ = ∆(0, δ), and prove
that each holomorphic function f : D \ R2 extends holomorphically to the
origin. To do this, consider the family of parabolas

St = {w = i(z2 + t)} ∩ {|z| ≤ δ

4
}, 0 ≤ t ≤ δ

4
, S := S0.

The sets St are one-dimensional compact surfaces.
Claim. One has St ∩ R2 = ∅ for t > 0; S0 ∩ R2 = {0}.

Proof Let (z, w) ∈ St ∩ R2. Then z2 + t ≥ 0, hence w ∈ R ∩ iR = {0},
w = 0 = z2 + t. The latter equality holds only for z = t = 0. This proves
the claim. 2
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The surfaces St with t > 0 are contained in D \ R2 and converge to
the surface S = S0 passing through 0 ∈ ∂(D \ R2) with boundaries, and
∂S ⊂ D \ R2. Therefore, each holomorphic function on D \ R2 extends
holomorphically to a neighborhood of the surface S, and hence, to the origin
(Continuity Principle). This proves the lemma. 2

Remark 7.35 One can prove the lemma by extending the functions to S
as Cauchy integrals along the surfaces St, without using the Continuity
Principle. That is, consider the new coordinates (z, w̃), w̃ = w − iz2, in
which the parabolas St are discs S̃t = {w̃ = it}. Then the Cauchy formula
for a function f written via integrating along the boundaries ∂St depends
holomorphically on w̃ and defines a holomorphic extension of the function
f to S̃0.

Exercise. Prove higher-dimensional analogue of Lemma 7.34.

7.6 Levi form. Necessary and sufficient Levi convexity con-
ditions for domains with C2-smooth boundary

Here we consider a domain D ⊂ Cn and a point ζ ∈ ∂D where the boundary
is C2-smooth. That is, there exist a neighborhood U = U(ζ) ⊂ Cn and a
C2-function φ : U → R such that

φ(ζ) = 0, D ∩ U = {φ < 0}, dφ(ζ) 6= 0. (7.4)

We give necessary and sufficient conditions for L-convexity of the domain
D at ζ in terms of the Hessian of the function φ: positive (non-negative)
definiteness of an appropriate Hermitian form called the Levi form.

The extended Levi form is the Hermitian quadratic form on TζCn defined
by the formula

L̃ =
n∑

j,s=1

∂2φ

∂z̄s∂zj
(ζ)dzjdzs. (7.5)

By definition, this is the quadratic form associated to the Hermitian inner
product

L̃(v1, v2) =

n∑
j,s=1

∂2φ

∂z̄s∂zj
(ζ)v1,j v̄2,s, (7.6)

where vj = (vj,1 . . . , vj,n). It is defined by the (1,1)-Hessian matrix ( ∂2φ
∂zj∂z̄s

),

whose Hermitianity will be proved below.
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Let H ⊂ Tζ∂D denote the maximal complex vector subspace. The Levi
form is the restriction

L = L̃|H .

Theorem 7.36 (Levi–Krzoska). Let D, U , ζ, φ be the same, as in (7.4).
Let H and L be the same, as above.

1) Let L be positive definite. Then D is holomorphically non-extendable
at ζ.

2) Let D be locally L-convex at ζ. Then L is non-negatively definite.

Before the proof of Theorem 7.36 we recall some preparatory material
and show that the Levi form is indeed a Hermitian form.

The differential of every complex-valued function g on a domain U ⊂ Cn
is the sum of its C-linear part and its C-antilinear part:

dg = ∂g + ∂̄g;

∂g(z) : TzCn → C is C− linear, ∂̄g(z) : TzCn → C is C− antilinear,

∂g =
n∑
j=1

∂g

∂zj
∂zj , ∂̄g =

n∑
j=1

∂̄g

∂z̄j
∂zj .

Proposition 7.37 Let φ be a real-valued function. Then

(∂̄φ(ζ))(v) = (∂φ(ζ))(v) for every v ∈ TζCn. (7.7)

If dφ(ζ) 6= 0, then one has H = Ker ∂φ(ζ).

Proof The differential dφ is real-valued, as is φ. Therefore, the forms ∂̄φ(ζ)

and ∂φ(ζ) have opposite imaginary parts. Thus, the difference ∂̄φ(ζ)−∂φ(ζ)
is a C-linear form on TζCn with identically zero imaginary part. Hence, it
is identically zero. This proves (7.7), which in its turn implies that dφ(ζ) =
2 Re ∂φ(ζ). Let now dφ(ζ) 6= 0. Then the differential ∂φ(ζ) is non-zero
and hence, its kernel is a complex hyperplane. Its real part 1

2dφ(ζ) vanishes
identically on the complex hyperplane H. Hence, ∂φ(ζ) ≡ 0 on H and
H = Ker ∂φ(ζ). The claim is proved. 2

Proposition 7.38 Let φ be a real-valued function on a neighborhood of a
point ζ ∈ Cn that is C2-smooth at ζ. Consider a biholomorphic system of
coordinates (z1, . . . , zn) centered at ζ. The asymptotic Taylor formula for
the function φ at ζ takes the form

φ(z) = 2 Re(∂φ(ζ)z +Q2,0(z)) + L̃(z, z) + o(||z||2). (7.8)
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Here L̃(z, z) =
∑n

j,s=1
∂2φ

∂z̄s∂zj
(ζ)zj z̄s is the extended Levi form (7.5) written

in the coordinates z and evaluated on the Euler vector field z = (z1, . . . , zn).
It is real-valued and obtained from a Hermitian bilinear form: its matrix

( ∂2φ
∂z̄s∂zj

(ζ)) is Hermitian. The form Q2,0 is a quadratic form defined by a

C-bilinear form.

Proof The linear and the quadratic Taylor polynomials of the function
φ(z) are real-valued, as is φ. The linear terms are given by dφ(ζ)(z) =
2 Re(∂φ(ζ)z), by (7.7). Thus, its homogeneous quadratic part is also real-
valued. It is the sum of three components: a C-bilinear quadratic form Q2,0

(a linear combination of products zjzk), a C-bi-antilinear quadratic form
Q0,2 (a linear combination of z̄j z̄k) and a so-called (1, 1)-quadratic form Q1,1

that is a linear combination zj z̄k. This decomposition is unique. Complex
conjugation preserves the homogeneous quadratic part, sends Q0,2 to a C-
bilinear quadratic form, Q2,0 to C-bi-antilinear quadratic form and Q1,1 to
a (1, 1)-quadratic form. Therefore, it fixes Q1,1 and permutes Q2,0 and Q0,2.
The asymptotic Taylor formula shows that Q1,1(z) = L̃(z, z). This proves

(7.8). Hermitianity of the matrix ( ∂2φ
∂z̄s∂zj

(ζ)) of the form L̃ follows from the

latter statement and invariance of the form Q1,1(z) under conjugacy. The
proposition is proved. 2

Let us give a coordinate-independent equivalent definition of the ex-
tended Levi form. Given a C2-function φ : U → R and a ζ ∈ U , we define a
Hermitian form L̃(v1, v2) on TζCn as follows. For given v1, v2 ∈ TζCn let us
take two arbitrary germs at ζ of holomorphic vector fields u1(z), u2(z) such
that uj(ζ) = vj . Set

g(z) := (∂φ(z))(u1(z)), ψ(z) := (∂̄g(z))(u2(z)), L̃(v1, v2) := ψ(ζ). (7.9)

Proposition 7.39 The value L̃(v1, v2) is well-defined: it depends only on
v1, v2 ∈ TζCn and does not depend on the choice of vector fields uj. It is

given by an Hermitian form L̃ on TζCn. In local holomorphic coordinates
(z1, . . . , zn) centered at ζ the latter form is given by (7.5), (7.6).

Proof It suffices to prove the coordinate presentation (7.5): the well-
definedness then follows immediately, and Hermitianity follows from Propo-
sition 7.38. One has

g(z) =
n∑
j=1

∂φ

∂zj
(z)uj(z).

71



Taking ∂̄-differential of the latter right-hand side results in differentiating
only the partial derivatives of the function φ: ∂̄uj = 0, since uj are holo-
morphic. This implies that ψ(z) = (∂̄g(z))(u2(z)) equals the value of the
Hermitian form (7.5) on the pair of vector fields (u1(z), u2(z)). Taking the
value ψ(ζ) = L̃(v1, v2) yields (7.6). The proposition is proved. 2

In what follows we will use the invariance of the (extended) Levi form
under holomorphic mappings.

Proposition 7.40 The extended Levi form associated to a function φ is
invariant under holomorphic mappings. That is, let W ⊂ Cr, h : W → D ⊂
Cn be a holomorphic mapping, φ : D → R be a C2-function. Let L̃φ and

L̃φ◦h be respectively the extended Levi forms associated to the functions φ
and φ ◦ h. Then for every z ∈W and vectors v1, v2 ∈ TzCn one has

L̃φ◦h(v1, v2) = L̃φ((dh(z))(v1), (dh(z))(v2)). (7.10)

Proof Consider the invariant definition (7.9) of the extended Levi form
L̃φ◦h at ζ ∈ W with uj being holomorphic vector fields on a neighborhood
of ζ, uj(ζ) = vj . One has

g(z) = (∂φ(h(z)))(dh(z)u1(z)), ψ(z) = (∂̄g(z))(u2(z)).

The function g(z) is a linear combination of partial derivatives of the func-
tion φ with coefficients being holomorphic functions: the components of the
holomorphic vector function (dh(z))u1(z). Taking its ∂̄-derivative along the
field u2(z) results in differentiating the derivatives of the function φ only
and subsequent multiplying them by the components of the vector func-
tion (dh(z))u2(z), by holomorphicity. This implies (7.10) and proves the
proposition. 2

Proposition 7.41 Let φ be a germ of real-valued C2-function on a neigh-
borhood of the origin in Cn. Let φ(0) = 0, dφ(0) 6= 0. Let L̃ denote the
corresponding extended Levi form on T0Cn. Then in appropriate local bi-
holomorphic coordinates z = (z1, . . . , zn) centered at 0 the function φ takes
the form

φ(z) = Re z1 + L̃(z, z) + o(|z|2), as z → 0. (7.11)

Here we take the value of the extended Levi form on the Euler vector field
z = (z1, . . . , zn).

72



Proof Let us introduce coordinates (z1, . . . , zn) such that H = {z1 = 0}.
We normalize z1 so that ∂φ(0) = 1

2dz1. Then

φ(z) = Re(z1 + 2Q2,0(z)) + L̃(z, z) + o(||z||2),

by (7.8). Replacing the coordinate z1 by z̃1 := z1 + 2Q2,0(z) yields (7.11).
2

Proof of Theorem 7.36. Let us prove Statement 1). Let L > 0. Consider
the local coordinates z centered at ζ, z(ζ) = 0 satisfying (7.11).

Claim. There exists a neighborhood U = U(ζ) ⊂ Cn such that z1 6= 0
on D ∩ U .
Proof Set w = (z2, . . . , zn). We have to show that the intersection of the
domain D with the coordinate w-subspace HC does not accumulate to 0 = ζ.
Or equivalently, φ|HC ≥ 0 on a neighborhood of the origin in HC. One has

φ|HC = L(w, w̄) + o(|w|2), (7.12)

by (7.11). This together with positive definiteness of the Levi form L on
HC implies non-negativity of the latter right-hand side on a neighborhood
of the origin in HC. The claim is proved. 2

The function z1 vanishes at ζ ∈ ∂D and does not vanish on D∩U . This
together with Theorem 7.33 implies holomorphic non-extendability of the
domain D at ζ. Statement 1) is proved.

Let us now prove Statement 2). Suppose the contrary: L(v, v̄) = −c < 0
for some v ∈ HC. Let us show that D is not L-convex. Without loss of
generality we consider that v = (0, 1, 0, . . . , 0) (applying a linear change of
coordinates w = (z2, . . . , zn), which does not change (7.11)). For a small
δ > 0 set

S = {|z2| ≤ δ, z1 = z3 = . . . , zn = 0}.
We show that ∂S ⊂ D and the compact holomorphic curve S is the limit of
a family of compact holomorphic curves Sk on which φ < 0, hence Sk ⊂ D.
This will imply that D is not L-convex.

For every δ small enough one has φ|S ≤ 0 and φ|∂S < 0, by (7.12), as in
the above proof of Statement 1). Hence, ∂S ⊂ D. For every k ∈ N set

Sk = S − (
1

k
, 0, . . . , 0) : the curve S shifted by the vector (−1

k
, 0, . . . , 0).

The Levi form L̃(z, z) restricted to S is equal to −c|z2|2 for appropriate
c > 0. One has

φ|Sk = −1

k
−c|z2|2+O(

|z2|
k

)+o(|z2|2)+o(
1

k2
) = −1

k
(1+O(z2))−c|z2|2(1+o(1)),
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by definition and (7.11). The latter right-hand side is negative for |z2| < δ,
whenever δ is small enough and k is big enough. Therefore, φ|Sk < 0, hence
Sk ⊂ D. This together with the previous discussion proves Statement 2)
and the Theorem. 2

7.7 Subharmonic functions and L-convexity

Levi–Krzoska Theorem gives a sufficient condition for L-convexity of a do-
main with C2-smooth boundary: strict positivity of the Levi form. Here
we show that a domain is automatically L-convex (and hence, a domain of
holomorphy), if it is a sublevel set of a function from a specific class: the
plurisubharmonic functions. The corresponding Levi forms are nonnegative
definite but not necessarily strictly positive definite. The plurisubharmonic
functions are natural generalizations of the subharmonic functions in one
complex variable. They have important applications. For example, the
proof of one of the most fundamental theorems of geometry, the Poincaré–
Köbe Uniformization Theorem, is based on use of subharmonic functions.

Definition 7.42 A C2-function φ : V → R on a domain V ⊂ C is harmonic
(subharmonic), if for every z0 ∈ V and every r > 0 small enough (depending
on z0, in particular, such that Dr(z0) ⊂ V ) one has

φ(z0) =
1

2π

∫ 2π

0
φ(z0 + reiθ)dθ, (7.13)

respectively,

φ(z0) ≤ 1

2π

∫ 2π

0
φ(z0 + reiθ)dθ. (7.14)

Recall that the Laplacian of a function in one complex variable is ex-
pressed in terms of ∂ and ∂ operators as follows:

∆ = 4
∂2

∂z∂z̄
.

Proposition 7.43 A C2-function of one complex variable is harmonic, if
and only if it satisfies the Laplace equation ∆φ = 0, or equivalently,

∂2

∂z∂z̄
φ = 0.
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A C2-function of one complex variable is subharmonic, if and only if its
Laplacian is nonnegative:

∂2

∂z∂z̄
φ ≥ 0. (7.15)

A C2-function on a domain V ⊂ C is (sub)harmonic, if and only if for every
point z0 ∈ V equality (7.13) (inequality (7.14)) holds for every r > 0 such
that Dr(z0) ⊂ V .

Proof Let us prove the second statement, on the subharmonic functions.
It will imply the statement on harmonic functions, being applied to ±φ.

Step 1): subharmonicity implies non-negativity of the Laplacian. Fix an

arbitrary z0 ∈ V , and let us prove that ∂2

∂z∂z̄φ(z0) ≥ 0. Let us choose the
affine coordinate z centered at z0 and write Taylor expansion of the function
φ at z0 = 0:

φ(z) = φ(0)+az+az+cz2+cz2+dzz̄+o(|z|2), a, c ∈ C, d =
∂2

∂z∂z̄
φ(0) ∈ R.

It suffices to show that d ≥ 0. The non-negative difference of the right- and
left-hand sides in inequality (7.14) is equal to the integral

1

2π

∫ 2π

0
(ψ(z) + dzz̄ + o(|z|2))dθ, z = eiθ, ψ(z) = 2 Re(az + cz2).

The integral of the function ψ(z) vanishes, since ψ is a linear combination of
the exponents e±iθ, e±2iθ. The integral of the function dzz̄ equals dr2, and
it dominates the integral of the third function. Therefore, if d < 0, then the
total integral is negative, – a contradiction. Hence, d ≥ 0.

Step 2): non-negativity of the Laplacian implies subharmonicity. Let
∂2

∂z∂z̄φ ≥ 0. Let us prove inequality (7.14) at a given point z0. We choose
affine coordinate z centered at z0, thus we consider that z0 = 0. Set

g(r) =
1

2π

∫ 2π

0
φ(reiθ)dθ, Dr(z0) ⊂ V.

Claim. The function g(r) is non-decreasing.
Proof One has

∂g

∂r
=

1

2π

∫ 2π

0

(
∂φ

∂z
eiθ +

∂φ

∂z̄
e−iθ

)
dθ =

1

2πir

∮
|z|=r

(
∂φ

∂z
dz − ∂φ

∂z̄
dz

)

= − 1

πir

∫
|z|<r

∂2

∂z∂z̄
φdz ∧ dz =

2

πr

∫
|z|<r

∂2

∂z∂z̄
φdx ∧ dy ≥ 0.
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This proves the claim. 2

One has g(0) = φ(0), hence g(r) ≥ φ(0). This proves inequality (7.14)
and the second step, which in its turn implies the third statement of the
proposition and finishes its proof. 2

Remark 7.44 The general definition of subharmonic function does not re-
quire even continuity: only upper semicontinuity and inequality (7.14) are
required. They are defined as functions with values in R̂ = R ∪ {−∞}. For
example, the function ln |z| is harmonic on C∗ = C \ {0} and subharmonic
on C: the mean inequality (7.14) holds at the origin, where the function
equals minus infinity. This is a continuous R̂-valued function. The series

+∞∑
k=1

1

k3
ln |z − 1

k
|

defines a subharmonic function on C that is discontinuous at the origin.

Remark 7.45 The motivation of the term “subharmonic” is the following.
Consider the Dirichlet problem to find a harmonic function f on a domain
V ⊂ C that is continuous on its closure and satisfies the boundary condition
f |∂V = ψ, where ψ : ∂V → R is a given continuous function. Let now φ
be a subharmonic function on V that satisfies the same boundary condition
φ|∂V = ψ. Then φ ≤ f on V . In the case, when V is a disk, the above
inequality at the center of the disk V follows immediately from the mean
inequality and equality of the boundary values of the harmonic and harmonic
functions in question. For every other point z0 ∈ V the inequality φ(z0) ≤
f(z0) follows from the same inequality at the center of the disk by applying
conformal automorphism of the disk V sending z0 to its center: the notions of
harmonic and subharmonic functions are invariant under pre-compositions
with holomorphic maps. Vice versa, take an arbitrary continuous function
φ on a domain W ⊂ C. Take an arbitrary disk D = Dr(z0), D ⊂ W , and
the harmonic extension f : D → R of the restriction φ|∂D. Let for every D
as above one have φ ≤ f in D. Then φ is subharmonic.

Theorem 7.46 (Maximum Principle for subharmonic functions).
Let V ⊂ C be a bounded connected domain, φ : V → R be a subharmonic
function continuous on V . Then

max
V

φ = max
∂V

φ.

If φ achieves its maximum at an interior point z0 ∈ V , then it is constant.
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Proof Let φ take a maximum at z0 ∈ V . Then inequality (7.14) implies
that φ ≡ φ(z0) on a neighborhood of the point z0. Applying this statement
to any point of the level subset {φ = φ(z0))} ⊂ V , we get that it is open and
closed. Hence, it coincides with V (connectivity). Theorem 7.46 is proved.

2

Definition 7.47 Let D ⊂ Cn be a domain. A C2 function φ : D → R is
pluri(sub)harmonic, if for every complex line Λ ⊂ Cn the restriction to Λ∩D
of the function φ is (sub)harmonic.

Proposition 7.48 A C2-function φ : D → R is pluriharmonic, if and
only if the corresponding extended Levi form L̃ vanishes identically. A C2-
function φ : D → R is plurisubharmonic, if and only if its extended Levi
form L̃ is non-negative definite at each point in D.

Proof Let Λ ⊂ Cn be an arbitrary complex line. Consider a system of affine
coordinates (z1, . . . , zn) such that Λ is the z1-axis. Let ζ ∈ Λ, vζ = ∂

∂z1
∈ TζΛ

denote the unit vector directing the z1-axis. One has

∂2φ

∂z1∂z̄1
(ζ) = L̃(vζ , vζ),

by definition. Therefore, the latter derivative is zero (non-negative) for all
Λ and ζ ∈ Λ ∩D, if and only if the extended Levi form vanishes identically
(respectively, non-negative definite) at each point in D. The proposition is
proved. 2

Corollary 7.49 The notion of pluri(sub)harmonicity is invariant under
holomorphic mappings. Namely, the composition φ◦h of a pluri(sub)harmonic
function φ with a holomorphic mapping h is pluri(sub)harmonic.

The corollary follows from Propositions 7.48 and 7.40.

Corollary 7.50 The restriction of a pluri(sub)harmonic function to a com-
pact holomorphic surface is pluri(sub)harmonic.

Remark 7.51 In fact, the notion of plurisubharmonic function is more gen-
eral than in the above definition: it includes discontinuous functions. The
general definition requires only upper semicontinuity on the definition do-
main and subharmonicity of restrictions to complex lines.
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Theorem 7.52 (Maximum Principle for plurisubharmonic functions).
Let φ : D → R be a plurisubharmonic function, and let S ⊂ D be a compact
holomorphic surface parametrized by closure of a connected domain in Cr.
Then

max
S

φ = max
∂S

φ.

Or equivalently, if the function φ|S achieves its maximum in the interior of
the surface S, then it is constant.

Proof Let h : W → S be a holomorphic parametrization by a connected
domain W ⊂ Cr with compact closure. The function g = φ ◦ h is plurisub-
harmonic. Suppose the contrary: it achieves a maximum at a point ζ ∈W .
Then its restriction to each line through ζ is a subharmonic function achiev-
ing a local maximum at ζ and hence, is equal to the same constant g(ζ) for
all lines. Finally, the function g is constant on a neighborhood of the point
ζ. The above argument shows that the level set {g = g(ζ)} is open, and it is
closed by continuity. This together with connectivity implies that the latter
level set coincides with all of W , hence g ≡ const. The theorem is proved.

2

Theorem 7.53 Let D ⊂ Cn be a domain, ζ ∈ ∂D. Let there exist a neigh-
borhood U = U(ζ) ⊂ Cn and a plurisubharmonic function φ : U → R such
that φ(ζ) = 0 and D ∩ U = {φ < 0}. Then D is locally L-convex at ζ.

Proof Suppose the contrary: D is not locally L-convex at ζ. Then there
exists a compact holomorphic surface S ⊂ U through ζ such that ∂S ⊂
D ∩ U . Thus, φ|S is a plurisubharmonic function such that φ|∂S < 0 and
φ(ζ) = 0, – a contradiction to the Maximum Principle. The theorem is
proved. 2

Corollary 7.54 Let φ : V → R be a plurisubharmonic function. Let D =
{φ < 0} b V (i.e., D ⊂ V ). Then D is L-convex, and hence, a domain of
holomorphy.

Proof The domain D is locally L-convex by Theorem 7.53. Its proof ap-
plied for U = V implies (global) L-convexity of the domain D. This together
with Theorems 7.22 and 7.32 implies that D is a domain of holomorphy. 2
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8 Stein manifolds

8.1 Stein manifolds: definition and main properties

Definition 8.1 A complex manifold M is said to be holomorphically con-
vex, if the holomorphically convex hull (H(M)-hull) of each its compact
subset is a compact subset. We say that the holomorphic functions on M
separate points, if for every two distinct points x 6= y in M there exists a
holomorphic function f : M → C such that f(x) 6= f(y).

Definition 8.2 A complex manifold M , set n = dimM , is said to be a
Stein manifold, if it satisfies the following conditions:

1) M is holomorphically convex;
2) the holomorphic functions on M separate points;
3) for every z ∈M there exist n holomorphic functions f1, . . . , fn on M

whose differentials at z are linearly independent: that is, the holomorphic
vector function (f1, . . . , fn) : M → Cn is a local biholomorphism at z.

Example 8.3 Every domain of holomorphy in Cn is obviously Stein. Let
now M ⊂ CN be a holomorphic submanifold. Then it is Stein. Indeed, let
H denote the collection of projections M → C to the coordinate axes, which
are holomorphic functions. The functions from class H obviously separate
points. Condition 3) holds even for functions from class H. Finally, the
H-convex hull of each compact subset in M is a bounded closed subset in
CN contained in M . Hence, it is compact. The next big theorem states the
converse.

Theorem 8.4 (Embedding Theorem). Each Stein manifold can be em-
bedded as a submanifold in CN for appropriate N . This is true for N =
2n+ 2, where n is the dimension of the manifold.

Corollary 8.5 Every domain of holomorphy in Cn can be embedded as a
submanifold in C2n+2. In particular, every geometrically convex domain in
Cn can be embedded as a submanifold in C2n+2.

Example 8.6 The unit disk D1 ⊂ C is Stein. It admits an embedding as a
submanifold in CN . The proof of this statement is non-trivial. In Problems 5
and 6 from Task 3 it is asked to prove the existence of its embedding to C2 by
using polynomial automorphisms with Fatou–Bieberbach domains. Namely,
consider a Fatou–Bieberbach domain B ⊂ C2 that is an attracting basin of a
linearizable attractive fixed point of a polynomial automorphism F : C2 →
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C2. We choose F so that B 6= C2. Recall that B is always biholomorphic
to C2. Consider a complex line L intersecting B and passing through its
boundary point. One can show that each connected component U of the
intersection L∩B is simply connected, applying the Maximum Principle to
the iterates Fm. Therefore, U ⊂ L ' C is conformally equivalent to the
unit disk. This together with biholomorphism B ' C2 yields an embedding
U → C2 as a submanifold.

9 Dolbeault cohomology

9.1 Basic definitions and ∂̄-Poincaré Lemma

Here we introduce the ∂̄-complex of differential forms, analogous to de Rham
complex.

Recall that each R-linear C-valued 1-form on a complex space Cn is a
linear combination of the forms dzj and their complex conjugates dzj with
constant complex coefficients. Thus, each R-linear 1-form is a sum of two 1-
forms: a C-linear form (linear combination of dzj) and a C-antilinear form
(linear combination of dzj). Therefore, the space of R-linear C-valued 1-
forms is the direct sum Λ1,0⊕Λ0,1, where Λ1,0 is the space of C-linear forms
and Λ0,1 (its complex conjugate) is the space of C-antilinear forms.

Passing to exterior powers, we get that the space of R-polylinear C-
valued skew-symmetric d-forms is the direct sum

⊕p+q=dΛp,q, Λp,q = (∧pj=1Λ1,0) ∧ (∧qs=1Λ0,1).

Passing to differential forms on a complex manifold M , we get that the
space Ωd of C∞-smooth differential d-forms is the direct sum

Ωd = ⊕p+q=dΩp,q,

Ωp,q = {forms whose restriction to each tangent space TxM lies in Λp,q}.

Recall that for a function g(z) on a complex manifold M , we denote by
∂̄g the C-antilinear part of its differential at each point:

dg(x) = ∂g(x) + ∂̄g(x).

Thus the image of the ∂̄-operator on functions lies in the space Ω0,1. The
∂̄-operator acting on differential forms is defined analogously. Namely, for
every R-linear C-valued d-form ω ∈ Ωp,q one has

dω ∈ Ωp+1,q ⊕ Ωp,q+1. (9.1)

80



Indeed, each term of the form ω is locally a linear combination of forms

dzi1 ∧ . . . dzip ∧ dzj1 ∧ · · · ∧ dzjq .

Taking differential transforms ω to sum of the above forms wedge-multiplied
by 1-forms: differentials of functional coefficients. Each 1-form multiplier
clearly lies in Ω1,0 + Ω0,1. This implies (9.1). Set

∂̄ω := the Ωp,q+1 − component of dω; ∂ω := its Ωp+1,q − component:

dω = ∂ω + ∂̄ω.

This yields the Dolbeault ∂̄-complex

∂̄ : Ωp,q 7→ Ωp,q+1.

Proposition 9.1 One has ∂̄2 = 0.

Proof One has d = ∂ + ∂̄. Hence,

d2 = ∂2 + ∂̄2 + ∂∂̄ + ∂̄∂ = 0.

For every (p, q)-form ω the three forms ∂2ω, (∂∂̄+∂̄∂)ω, ∂̄2ω lie in the vector
subspaces Ωp+2,q, Ωp+1,q+1 and Ωp,q+2 respectively. Therefore, ∂̄2ω is the
Ωp,q+2-component of d2ω. Hence, it vanishes, since d2ω = 0. 2

Definition 9.2 A differential form ω is ∂̄-closed, if ∂̄ω = 0. A form is
exact, if it is the image of another form under the ∂̄-operator. The (p, q)-th
Dolbeault cohomology is the group

Hp,q := Ker ∂̄|Ωp,q/ Im(∂̄(Ωp,q−1).

Remark 9.3 Each ∂̄-exact form is ∂̄-closed, since ∂̄2 = 0.

Remark 9.4 Every holomorphic mapping of complex manifolds G : M →
N induces the pullback mapping G∗ : Hp,q(N)→ Hp,q(M). The Dolbeault
cohomology of biholomorphically equivalent manifolds are isomorphic.

The ∂̄-problem has the following versions:
- Given a function g(z) of one variable, find a function f such that

∂̄f

∂z̄
= g. (9.2)
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- Given a ∂̄-closed differential (p, q)–form ω, find an (p, q − 1)-form α
such that

∂̄α = ω. (9.3)

The obstruction to solve the ∂̄-problem is non-triviality of the Dolbeault
cohomology class of the form ω.

The results on ∂̄-problem form an important base for many famous re-
sults in complex analysis and related topics such as quasiconformal map-
pings, Teichmüller theory, moduli spaces of Riemann surfaces, algebraic
geometry. It has many applications in the above-mentioned domains and
complex dynamics.

Theorem 9.5 (∂̄-Poincaré Lemma). For every (p, q) ∈ Z2
≥0 with q > 0

the (p, q)-cohomology of polydisk is trivial: each ∂̄-closed (p, q)-form is exact.

Remark 9.6 The ∂̄-Poincaré Lemma has important corollaries in complex
geometry. For example, it allows to prove that every holomorphic hyper-
surface in a polydisk ∆ (i.e., an analytic subset in ∆ given locally as zero
locus of one local holomorphic function) is a zero locus of a global holomor-
phic function ∆ → C. The proof of this statement (omitted in the present
lectures) is based on solution of holomorphic additive Cousin problem. See
the next subsection.

Theorem 9.7 (Generalized ∂̄-Poincaré Lemma). Each Stein manifold
has trivial (p, q)-cohomology for every (p, q) ∈ Z2

≥0 with q > 0.

We will not prove Theorem 9.7 in this lectures.

9.2 Proof of ∂̄-Poincaré Lemma in one variable

First we treat the ∂̄-problem for functions. Then we introduce ∂̄-operator
acting on differential forms, which defines Dolbeault complex and cohomol-
ogy. We solve the corresponding ∂̄-problem on polydisk by proving triviality
of Dolbeault cohomology (∂̄-Poincaré Lemma). Afterwards we apply this re-
sult together with elements of sheaf theory to show that each hypersurface
in a polydisk is the zero locus of a global holomorphic function.

Theorem 9.8 For every C∞ function g : D1 → C on the unit disk D1 ⊂ C
there exists a C∞ function f : D1 → C satisfying (9.2).

Addendum. Let the function g = g(z, w, s) depend on additional pa-
rameters (w, s) ∈ V , where V is a domain in Cn × S. Let g be C∞-smooth
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in (z, w, s) and holomorphic in w. Then the corresponding function f can
be chosen from the same class: C∞-smooth in (z, w, s) and holomorphic in
w.

The addendum will be further applied to prove the above-mentioned ∂̄-
Poincaré Lemma. The proof of the theorem and the addendum will be split
into two steps:

- case of a function f with finite support in D1;
- the general case.
In the deduction of the general case from the finite support case we use

the following obvious remark.

Remark 9.9 If a C∞-smooth function f solving (9.2) exists, then it is
unique up to addition of a holomorphic function.

Proposition 9.10 1) For every C∞ function g : D1 → C with finite support
the function

f(z) =
1

2πi

∫
C

g(ζ)

ζ − z
dζ ∧ dζ =

1

2πi

∫
C

g(ζ)

ζ − z
dζ ∧ dζ. (9.4)

is C∞-smooth in z ∈ C and satisfies (9.2). Here we extend g to a C∞-
function on all of C by setting it zero outside the unit disk D1.

2) In the case, when g depends on additional parameters as in the ad-
dendum, the function f satisfies the statements of the addendum.

Proof The above integral converges and is a well-defined continuous func-
tion, being an integral of a function O( 1

ζ−z ) over a real two-dimensional
domain. One has

f(z) =
1

2πi

∫
C

g(u+ z)

u
du ∧ du, u = ζ − z. (9.5)

Taking the ∂̄
∂z̄ -derivative yields

∂̄f

∂z̄
(z) =

1

2πi

∫
C

∂̄g

∂z̄
(u+ z)

du

u
∧ du

= − 1

2πi

∫
C

∂̄g

∂z̄
(u+ z)du ∧ du

u
= − 1

2πi

∫
C
d(g(u+ z)

du

u
)

The latter integral coincides with the same integral but taken over the disk
D2, since the subintegral form vanishes outside it, as does g. It equals the
integral of the form g(u + z)duu over the boundary ∂D2 minus the limit of
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its integral over the circle ∂Dδ, by Stokes formula. Taking into account that
the former integral vanishes, as does g(u+ z) on ∂D2, one has

∂̄f

∂z̄
(z) = lim

δ→0
(

1

2πi

∮
∂Dδ

g(u+ z)
du

u
).

The expression under the limit is equal to the mean value of the function g
over the circle of radius δ centered at z; this follows by substitution u = δeiθ.
Therefore, the limit equals g(z). This proves (9.2). The function f is C∞,
since the integral in (9.5) can be differentiated: the derivatives of the subin-
tegral expression have converging integrals, since the differentiations do not
affect the denominator u. The same argument proves smoothness (holomor-
phicity) of the function f in the additional parameters of the function g.
The proposition is proved. 2

Proof of Theorem 9.8. Set

rn = 1− 1

2n
.

Consider a sequence of ”hat functions”:

ρn : C→ R≥0 is a C∞ − function supported in D1, ρn|Drn+1
≡ 1, (9.6)

Set

gn(z) := g(z)ρn(z), fn(z) =
1

2πi

∫
C

gn(ζ)

ζ − z
dζ ∧ dζ. (9.7)

One has
∂̄fn
∂z̄

= g on Drn+1 , (9.8)

by Proposition 9.10. In the case, when the functions fn converge with all the
derivatives uniformly on compact subsets in D1 to a function f , the latter
satisfies the statements of the theorem. Let us show that one can modify
the functions fn inductively, replacing them by

f̃n = fn − Pn, Pn(z) being a polynomial,

so that the new functions f̃n converge. One has

∂̄f̃n = ∂̄fn = g on Drn+1 , (9.9)

by construction. This together with the above argument will prove the
theorem.

Induction base: n = 1. Set f̃1 = f1.
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Induction step. Let f̃n be already constructed. Let us construct f̃n+1 so
that

|f̃n+1 − f̃n| <
1

2n
on Drn . (9.10)

The difference ψn = fn+1− f̃n is holomorphic on Drn+1 , by (9.9). Therefore,
its Taylor series converges to it uniformly on Drn b Drn+1 . Fix a Taylor
polynomial Pn such that

|ψn − Pn| <
1

2n
on Drn . (9.11)

Set f̃n+1 = fn+1 − Pn. Then inequality (9.10) holds by construction. The
induction step is over. The functions f̃n are constructed.

For every compact subset K b D1 there exists an N > 0 such that the
functions f̃n with n > N are well-defined on K and converge uniformly on K,
as n→∞. This follows from inequality (9.10), which implies that for every
n,m > N the difference f̃n− f̃m has module less than 1

2l
, l = min{m,n}− 1

on K. This together with the above discussion proves the theorem. 2

Proof of the addendum. The functions fn given by (9.7) have the same
regularity in parameters, as g, by Proposition 9.10. We show that one can
choose the above polynomials Pn so that the functions f̃n converge uniformly
with derivatives on compact subsets in D1×V , and hence, the limit function
f has the same regularity. To do this, we use the following proposition.

Proposition 9.11 Let a function f(z, w, s) be C∞-smooth on a domain
D1 × V , where V is a domain in Cn × S, S being a manifold. Let f be
holomorphic in (z, w). Then the finite sums of its Taylor series in powers
of z with coefficients depending on (w, s) ∈ V are C∞-smooth in (z, w, s),
holomorphic in (z, w) and converge to f uniformly on compact sets in D1×V
together with all the derivatives in (z, w, s).

Proof Smoothness (holomorphicity in w) of Taylor coefficients follows from
the same regularity of the function and the Cauchy integral formulas for
Taylor coefficients. Let us first prove uniform convergence of the Taylor
series. Fix 0 < µ < ν < 1 and a compact subset K b V . Set

M = max
Dν×K

|f |.

Let ck(w, s) denote the Taylor coefficient of the function f at zk. One has

|ck(w, s)| ≤
M

νk
for every s ∈ K,
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by the Cauchy Inequalities. Therefore, for every z ∈ Dµ one has

|ck(w, s)zk| ≤Mβ|k|, β =
µ

ν
< 1.

The right-hand sides of the above inequality form a series converging to
M(1 − β)−n. This implies the uniform convergence of the Taylor series on
Dµ × K. The convergence of derivatives is proved by the same argument
with f being replaced by its derivatives. The proposition is proved. 2

Fix a compact exhaustion K1 b K2 b · · · = V of the domain V . In the
above construction of the functions f̃n let us choose polynomials Pn so that
inequality (9.11) holds on the product Drn×Kn for the function ψn−Pn and
all its mixed derivatives in the variable z and the parameters up to order n.
Then the functions f̃n thus constructed converge with derivatives uniformly
on compact sets. The limit is C∞-smooth and is holomorphic in (z, w), by
Weierstrass Theorem. The addendum is proved. 2

9.3 Proof of ∂̄-Poincaré Lemma in higher dimensions

Let ω ∈ Ωp,q, q > 0, ∂̄ω = 0. Let us show that there exists a form α ∈ Ωp,q−1

such that ∂̄α = ω. This will prove the theorem.
1) Reduction to the case (0, q). The form ω can be written as a sum

ω =
∑
I

dzI ∧ ωI , ωI =
∑
J

gIJdzJ ∈ Ω0,q, |I| = p,

∂̄ω = (−1)p(q+1)
∑
I

dzI ∧ ∂̄ωI = 0.

The p-forms dzI are linearly independent. This together with the latter
equality implies that ∂̄ωI = 0. Suppose that we have proved the theorem
for (p, q) = (0, q). Then we can find (0, q− 1)-forms αI such that ∂̄αI = ωI .
Set

α = (−1)pq
∑
I

dzI ∧ αI .

One has ∂̄α = ω, by definition. This proves the theorem in the general case.
2) Case (0, q): p = 0. Then

ω =
∑
J

gJdzJ , ∂̄ω = 0, |J | = q > 0.

Set
K = ∪J, gJ 6≡0{j1, . . . , jq} ⊂ {1, . . . , n}; |K| ≥ q.
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We prove the existence of a form α such that ∂̄α = ω by induction in |K|.
Induction base: |K| = q. Then up to permutation of coordinates we can

and will consider that

ω = g(z)dz1 ∧ · · · ∧ dzq.

The equality ∂̄ω = 0 is equivalent to the statement that the function g
is holomorphic in zq+1, . . . , zn. There exists a C∞ function f : ∆ → C
holomorphic in the same variables such that

∂̄f

∂z1
= g,

by Theorem 9.8 and its addendum. Set

α = fdz2 ∧ · · · ∧ dzq.

One has ∂̄α = ω, by definition. This proves the induction base.
Induction step. Let we have proved the existence of the above form α in

the case, when |K| < l, l > q. Let us prove its existence for a form ω with
|K| = l. Up to permutation of coordinates, we can and will consider that
1 ∈ K. Then

ω =
∑
I

gIdz1 ∧ dzI +
∑
J

gJdzJ , I = (i1, . . . , iq−1), J = (j1, . . . , jq),

is, jr ∈ K ′ = K \ {1}.

The functions gI are holomorphic in variables zt, t /∈ K. This follows from
the equality ∂̄ω = 0 and linear independence of the collection of 1-forms
dz1 ∧ dzI and dzJ . Therefore, for every I there exists a C∞ function fI :

∆→ C holomorphic in the same variables such that ∂̄fI
∂z1

= gI . Set

β =
∑
I

fIdzI .

The difference ω − ∂̄β is a ∂̄-closed form, and it contains only products dzS
with S = (s1, . . . , sq), sj ∈ K ′ = K \{1}, by construction. One has |K ′| < l.
Therefore, there exists a form α such that ∂̄α = ω − ∂̄β, by the induction
hypothesis. Thus,

ω = ∂̄(α+ β).

The induction step is over. The proof of the ∂̄-Poincaré Lemma is complete.
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9.4 Case of (p, 0)-forms

Proposition 9.12 For every p ∈ Z≥0 the (p, 0)-cohomology of every com-
plex manifold is isomorphic to the space of holomorphic (p, 0)-forms.

Proof The space of (p,−1)-form being trivial, is its ∂̄-image in Ωp,0 is also
trivial. Therefore, the (p, 0)-cohomology coincides with the kernel of the
operator ∂̄ in Ωp,0. A form ω ∈ Ωp,0 with local coordinate presentation∑

J aJ(z)dzJ lies in its kernel, if and only if ∂̄aJ
∂z̄s

= 0 for all J and s, i.e.,
the coefficients aJ(z) are holomorphic; or equivalently, so is ω. This follows
from linear independence of the forms dzs, dzJ . The proposition is proved.

2

9.5 Holomorphic hypersurfaces. Existence of defining holo-
morphic functions. Cousin problems

Definition 9.13 A holomorphic hypersurface in a complex manifold M is
an analytic subset A ⊂M such that each its point has a neighborhood U in
M where the set A∩U is zero locus of just one holomorphic function on U .

Here we study the question of the existence of global holomorphic function
vanishing exactly on A.

Proposition 9.14 An analytic subset is a hypersurface, if and only if it
has pure codimension one, i.e., each connected component of its regular part
has codimension one.

Proof Let A ⊂ M be a hypersurface. Fix an arbitrary point x ∈ A and
its neighborhood U = U(x) ⊂M where there exists a holomorphic function
f : U → C vanishing exactly on A ∩ U . Without loss of generality we
consider that in local coordinates (z1, . . . , zn), n = dimM , centered at x
the domain U is a Weierstrass polydisk ∆n−1 ×Dδ for the function f , and
f is a Weierstrass polynomial. Here ∆n−1 is a polydisk in the coordinate
(z1, . . . , zn−1)-hyperplane. Let π : U → ∆n−1 denote the projection. Then
there exists an analytic subset B ⊂ ∆n−1 such that the intersection Ao :=
(A ∩ U) ∩ π−1(∆n−1 \ B) lies in the regular part Areg and the restriction
π : Ao → ∆n−1 \ B is a holomorphic covering. This immediately implies
that A is of pure codimension one.

Conversely, let A be of pure codimension one. Fix an arbitrary point x ∈
A and its neighborhood U where there exists a collection of (not identically
zero) holomorphic functions f1, . . . , fk : U → C such that A ∩ U = {f1 =
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· · · = fk = 0}. Set f = f1. Again without loss of generality we can and will
consider that U is its Weierstrass polydisk ∆n−1×Dδ and f is a Weierstrass
polynomial. Set

Ã := {f = 0} ⊂ U.
Let B ⊂ ∆n−1 be the above analytic subset constructed for the zero locus Ã:
Ão := (Ã∩U)∩π−1(∆n−1\B) ⊂ Ãreg and the projection π : Ão → ∆n−1\B
is a covering. One has (A ∩ U) ⊂ Ã. Therefore, Ão ∩ A is an open subset
in A. The intersection of the set A with a connected component of the
latter covering should be either emply, or the whole component. Indeed,
otherwise the latter intersection would be a non-trivial analytic subset in the
component (thus, of codimension at least two in Cn) that is simultaneously
an open subset in A. Therefore, A is not of pure codimension one (density of
Areg in A), – a contradiction. The set A∩U cannot contain an open subset
lying entirely in π−1(B) for the same reason. Therefore, the intersection
A ∩ Ã0 is open and dense subset in A ∩ U , and it is a union of connected
components of the covering Ã0. Hence, A ∩ U is the closure of their union.
Each component contained in A∩U corresponds to an irreducible factor gj
of the function f in U . Therefore, A ∩ U = {

∏
j gj = 0}. Hence, A is a

hypersurface. The proposition is proved. 2

Proposition 9.15 Let A ⊂M be a hypersurface. For every x ∈ A let IA(x)
denote the ideal in the local ring On of germs of holomorphic functions at x
consisting of those germs that vanish on A. The ideal IA(x) is principal: it
has one generator given by the above product g :=

∏
j gj. A generator g is

completely characterized (up to multiplication by unity) by the property that
dg(y) 6= 0 for an open and dense subset of points y ∈ A close to x. For every
y ∈ A close enough to x the function g is a generator of the corresponding
ideal IA(y).

Proof The property of the function g to be a generator of ideal and the
second statement of the proposition (on differentials) follow immediately
from the fact that each component of the above covering is the zero locus of
an irreducible holomorphic function (a unique Weierstrass polynomial): an
irreducible factor in every function vanishing on A. See Subsection 5.7. Its
third statement follows from its second statement. 2

Definition 9.16 Let A ⊂ M be a holomorphic hypersurface in a complex
manifold M . A holomorphic function f : M → C is a global defining function
for the hypersurface A, if A = {f = 0} and for every point x ∈ A the germ
of the function f at x generates the corresponding ideal IA(x).

89



Theorem 9.17 Every holomorphic hypersurface in a polydisk has a global
defining function.

We will see that existence of a global defining function is equivalent
to solvability of the so-called multiplicative holomorphic Cousin problem
(vanishing of appropriate cohomology). Then we make a first step towards
its proof for polydisk: we solve additive holomorphic Cousin problem. We
discuss how its solution together with a topological fact (stated without
proof) imply solvability of the multiplicative problem and thus, existence of
global defining function.

Definition 9.18 Let M be a complex manifold. Consider its locally finite
covering ∪jUj by open subsets. An additive holomorphic (C∞-smooth) cov-
ering 1-cocycle is a collection hij of functions holomorphic (C∞-smooth) on
Ui ∩ Uj satisfying the cocycle identities:

hij = −hji; hij + hjk + hki = 0 on Ui ∩ Uj ∩ Uk. (9.12)

A cocycle is a holomorphic (C∞-smooth) coboundary, if there exists a col-
lection of holomorphic (C∞-smooth) functions hj : Uj → C such that

hij = hj − hi on Ui ∩ Uj . (9.13)

A multiplicative 1-cocycle (coboundary) is defined in the same way, but
with all functions being nowhere vanishing and with relations (9.12), (9.13)

written in the multiplicative group: hij = h−1
ji ; hijhjkhki = 1; hij =

hj
hi

.

Remark 9.19 Each holomorphic coboundary is a holomorphic 1-cocycle.

The Holomorphic (C∞) Multiplivative (Additive) Cousin Prob-
lem. Is the converse true? Is it true that each holomorphic (C∞) multi-
plicative (additive) 1-cocycle is a holomorphic coboundary?

Let A ⊂ M be a holomorphic hypersurface. Let us consider its locally
finite covering by open subsets Uj ⊂ M such that there exist holomorphic
functions gj : Uj → C for which A ∩ Uj = {gj = 0} and gj generate the
ideals IA(y) for every y ∈ A ∩ Uj . Then

hij =
gj
gi

(9.14)

are nonvanishing holomorphic functions on Ui ∩ Uj , by Proposition 9.15.
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Let us consider the covering of the whole manifold by the above neigh-
borhoods Uj and the complement

U0 = M \A.

Set
g0 = 1, h0j =

gj
g0

= gj on U0 ∩ Uj . (9.15)

The collection of the functions hij on Ui ∩Uj is obviously a holomorphic
multiplicative 1-cocycle.

Proposition 9.20 An analytic hypersurface A ⊂ M admits a global defin-
ing function, if and only if the Multiplicative Cousin Problem for the above
cocycle is solvable: that is, if and only if there exist nonvanishing holomor-
phic functions fi : Ui → C∗ such that

fj
fi

= hij . (9.16)

Proof Let f be a defining function. Then the functions fj =
gj
f are

holomorphic and nonvanishing on Uj and satisfy (9.16). Conversely, let
fj : Uj → C∗ be nonvanishing holomorphic functions satisfying (9.16). Then

f =
gj
fj

is a global defining function: the latter fractions are holomorphic on the
domains Uj , coincide on their intersections, by (9.16), vanish exactly on A
and generate the corresponding ideals. The proposition is proved. 2

It appears that solvability of Multiplicative Cousin Problem is closely re-
lated to solvability of the additive one and to the singular integer homology
of the ambient manifold. Namely, consider the case, when all the covering
domains Uj are simply connected and their pairwise intersections are con-
nected and simply connected. Then for a given multiplicative one-cocycle
hij we can take the logarithms gij = −gji :=

lnhij
2πi , which are well-defined

on the intersections Ui ∩Uj . However each gij is well-defined up to additive
integer constant. The cocycle relation

Gijk := gij + gjk + gki = 0

is not necessarily true anymore, but it holds modulo Z. At the same time,
the left-hand sides Gijk are well-defined constant integer-valued functions
on the triple intersections Ui ∩Uj ∩Uk. They satisfy the 2-cocycle relations:

Gijk is (anti) invariant under (odd) even permutation of indices i, j, k;
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Gjk` −Gik` +Gij` −Gijk = 0 on Ui ∩ Uj ∩ Uk ∩ U`.

Proposition 9.21 Let an integer 2-cocycle Gijk be an integer coboundary:
there exist integers φij such that Gijk = φij + φjk + φkj. Then

g̃ij := gij − φij

is an additive holomorphic cocycle.

The proposition follows from definition.

Remark 9.22 It appears that for a covering as above each integer 2-cocycle
is an integer coboundary, if and only if the manifold M has trivial second
integer singular cohomology H2(M,Z). For example, this holds in the case,
when M is contractible, e.g., a polydisk. But we will not prove this in the
present lectures.

Corollary 9.23 Let M have trivial second integer cohomology. Consider
its covering as above. Then each holomorphic multiplicative cocycle can be
transformed to a holomorphic additive cocycle by taken appropriate branch of
log as above. For these M and covering solvability of every holomorphic Ad-
ditive Cousin Problem implies solvability of every holomorphic Multiplicative
Cousin Problem.

Theorem 9.24 On every polydisk ∆ each Holomorphic Additive Cousin
Problem can be solved: for every covering each holomorphic 1-cocycle is a
coboundary. In general, this is true on every complex manifold with trivial
Dolbeault (0, 1) ∂̄-cohomology.

Proof Consider a locally finite covering ∆ = ∪jUj and a holomorphic
1-cocycle hij : Ui ∩ Uj → C. Let us prove that there exist holomorphic
functions hj : Uj → C such that hij = hj − hi.

Step 1. Realizing the cocycle as a smooth coboundary. Construction of
C∞-smooth functions hj satisfying the coboundary identity (9.13): hij =
hj − hi. Take a partition of unity ρj subordinated to the covering Uj :
ρj : ∆ → R are C∞-smooth functions vanishing on ∆ \ Uj and also on
neighborhoods of the boundaries ∂Uj , and such that

∑
j ρj = 1. For every

j set

hj =
∑
s

ρshsj : Uj → C.

These are well-defined C∞-smooth functions on Uj . Indeed, each ρs vanishes
on a neighborhood of the boundary ∂Us in ∆. Hence, the function equal to
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ρshsj on Uj ∩Us and zero on Uj \Us is well-defined and C∞-smooth on Uj .
Therefore, each hj is well-defined and C∞-smooth on Uj , by local finiteness
of covering. One has

hj − hi =
∑
s

ρs(hsj − hsi).

In the latter sum each ρs vanishes everywhere on Ui ∩ Uj , except for the
intersection Ui ∩Uj ∩Us. On the latter intersection one has hsj − hsi = hij ,
by the cocycle identity (9.12). Therefore, hj − hi = hij

∑
s ρs = hij . Thus,

the coboundary identity holds.
Step 2. Correcting hj to make them holomorphic, keeping hij the same.

Set
ω := ∂̄hj on Uj .

This is a well-defined C∞-smooth form of type (0, 1) on the whole manifold
∆. Indeed, this definition matches on the intersections Ui ∩ Uj : ∂̄hj −
∂̄hi = ∂̄hij = 0, since hij are holomorphic. The form ω is closed, since
∂̄2 = 0. Therefore, it is exact, since the manifold has trivial Dolbeault (0, 1)
∂̄-cohomology. Hence, there exists a C∞-smooth function f : ∆ → C such
that ∂̄f = ω. Set now

h̃j := hj − f.

The functions h̃j are holomorphic on Uj , since ∂̄h̃j = ∂̄hj − ∂̄f = ω−ω = 0.

One has h̃j − h̃i = hij on Ui ∩Uj , by construction. Therefore, the 1-cocycle
in question is a holomorphic coboundary. Theorem 9.24 is proved. 2

Theorem 9.24 together with Corollary 9.23 imply Theorem 9.17.
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