
Exercises on symmetric functions 16.01.2024

These exercises are due by January 23rd. This is a general rule: the due date is one week
after the assignment. The final grade for the course is calculated as 0.1 of the percentage of
completely solved problems. There will be about 100 problems in total. You may submit e.g.
the high quality scans of your handwritten solutions in the natural order. I will grade neither
poor quality scans nor randomly ordered scans. You may also submit your handwritten
solutions as a hardcopy or solutions typeset in TeX.

1. For a box x = (i, j) in a Young diagram λ of length ℓ(λ) = n we define its hooklength
as h(x) = h(i, j) := λi + λtj − i− j + 1 (here λt stands for the transposed Young diagram).

Also, we set µi := λi + n− i, 1 ≤ i ≤ n. Prove

λ1∑
j=1

tλ
t
j+λ1−j +

n∑
j=1

tλ1−1+j−λj =

λ1+n−1∑
j=0

tj.

2. Prove

λ1∑
j=1

th(1,j) +
n∑

j=2

tµ1−µj =

µ1∑
j=1

tj.

3. Prove
∑
x∈λ

th(x) +
∑
i<j

tµi−µj =
∑
i≥1

µi∑
j=1

tj.

4. Prove
∏
x∈λ

(1− th(x)) =

∏
i≥1

∏µi

j=1(1− tj)∏
i<j(1− tµi−µj)

.

5. Prove
∏
x∈λ

h(x) =

∏
i≥1 µi!∏

i<j(µi − µj)
.
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1. Prove that the sum of all hooklengths of a diagram λ is
∑

x∈λ h(x) = n(λ)+n(λt)+ |λ|,
where n(λ) :=

∑
i≥1(i− 1)λi =

∑
i≥1

(
λt
i
2

)
.

2. For a box x = (i, j) ∈ λ we define its content as c(x) := j − i. Prove that
∑

x∈λ c(x) =
n(λt)− n(λ).

3. For n ≥ ℓ(λ) prove
∏
x∈λ

(1− tn+c(x)) =
∏
i≥1

φλi+n−i(t)

φn−i(t)
, where φr(t) := (1−t)(1−t2) · · · (1−

tr).
4. A partition λ = (λ1, . . . , λn) can be written in the Frobenius notation (α1, . . . , αr | β1, . . . , βr),

where αi := λi − i; βi := λti − i, 1 ≤ i ≤ r, and r is the length of the intersection of the

diagram λ with the diagonal i = j. Prove
n∑

i=1

ti(1− t−λi) =
r∑

j=1

(tβj+1 − t−αj).

5. Prove
∑
x∈λ

(h(x)2 − c(x)2) = |λ|2.

1
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1. Let λ, µ ∈ P(n) be two partitions of n. Prove that λ ≥ µ (i.e. λ1 ≥ µ1, λ1 + λ2 ≥
µ1 + µ2, . . .) if and only if there is a double stochastic n× n-matrix M (i.e. mij ∈ R≥0, and
the sums of the matrix entries in every column and in every row are equal to 1) such that
Mλ = µ.

2. We specialize xi = 1/n for 1 ≤ i ≤ n, and xi = 0 for i > n. (a) Prove that
er = n−r

(
n
r

)
, hr = n−r

(
n+r−1

r

)
. (b) Let us take the limit as n → ∞. Prove that er = hr =

1
r!
, p1 = 1 and pr = 0 for r > 1; moreover, mλ = 0 unless λ = (1r).
3. We specialize xi = qi−1 for 1 ≤ i ≤ n, and xi = 0 for i > n.

(a) Prove E(t) =
n−1∏
i=0

(1 + qit) =
n∑

r=0

qr(r−1)/2

[
n

r

]
tr, where

[
n
r

]
is the Gaussian q-binomial co-

efficient (1−qn)(1−qn−1)···(1−qn−r+1)
(1−q)(1−q2)···(1−qr)

.

(b) Prove H(t) =
n−1∏
i=0

(1− qit)−1 =
∞∑
r=0

[
n+ r − 1

r

]
tr.

4. Let us take the limit as n→ ∞.

(a) Prove E(t) =
∞∏
i=0

(1 + qit) =
∞∑
r=0

qr(r−1)/2tr/φr(q), where φr(q) = (1−q)(1−q2) · · · (1−qr).

(b) Prove H(t) =
∞∏
i=0

(1− qit)−1 =
∞∑
r=0

tr/φr(q), and pr = (1− qr)−1.

5. Since the functions hr are algebraically independent, we can specialize their values in

an arbitrary way. For instance, we may take H(t) =
∞∏
i=0

1− bqit

1− aqit
.

Prove hr =
r∏

i=1

a− bqi−1

1− qi
, er =

r∏
i=1

aqi−1 − b

1− qi
, pr =

ar − br

1− qr
.
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1. We set xi = qi−1, 1 ≤ i ≤ n. Prove

(a) aλ+ρ = qn(λ)+(
n
3)
∏
i<j

(1− qλi−λj−i+j) = qn(λ)+(
n
3)
∏

i≥1 φλi+n−i(q)∏
x∈λ(1− qh(x))

.

(b) sλ = qn(λ)
∏
x∈λ

1− qn+c(x)

1− qh(x)
(notations of the previous problem sets). In other words,

sλ(1, q, . . . , q
n−1) = qn(λ)

[
n
λt

]
, where

[
n
λ

]
:=

∏
x∈λ

1− qn−c(x)

1− qh(x)
.
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2. Let us take the limit as n→ ∞, so that H(t) =
∞∏
i=0

(1− qit)−1.

Prove sλ = qn(λ)
∏
x∈λ

(1− qh(x))−1 = qn(λ)Hλ(q)
−1, where

Hλ(q) =
∏
x∈λ

(1− qh(x)) is the hook polynomial.

3. If we set H(t) =
∞∏
i=0

1− bqit

1− aqit
, prove sλ = qn(λ)

∏
x∈λ

a− bqc(x)

1− qh(x)
.

4. (a) If we set xi = 1, 1 ≤ i ≤ n, and xi = 0, i > n, then prove E(t) = (1 + t)n and

sλ =
∏
x∈λ

n+ c(x)

h(x)
.

(b) If we set E(t) = (1 + t)a for arbitrary a (not necessarily a positive integer), then prove

sλ =
∏
x∈λ

a+ c(x)

h(x)
. Let

(
a

λ

)
:=

∏
x∈λ

a− c(x)

h(x)
.

(c) Prove

(
a

λ

)
= det

((
a

λi − i+ j

))
and

(
−a
λ

)
= (−1)|λ|

(
a

λt

)
.

5. Let us specialize xi = 1/n, 1 ≤ i ≤ n; xi = 0, i > n, and take the limit as n → ∞.
Prove (a) E(t) = H(t) = et.

(b) sλ = lim
n→∞

n−|λ|
∏
x∈λ

n+ c(x)

h(x)
=

∏
x∈λ

h(x)−1.
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1. Prove (a)
∏
i,j

(1 + xiyj) =
∑
λ

sλ(x)sλt(y).

(b) E(t)n =
∑
λ

sλ(x)sλt(y) =
∑
λ

(
n

λ

)
sλ(x)t

|λ| (where we set y1 = . . . = yn = t, and 0 =

yn+1 = yn+2 = . . .)

(c) E(t)a =
∑
λ

(
a

λ

)
sλt

|λ|.

(d) H(t)a =
∑
λ

(
a

λt

)
sλt

|λ|.

2. We set yi = qi−1, 1 ≤ i ≤ n, and yi = 0, i > n. Prove

(a)
n∏

i=1

E(qi−1) =
∑
λ

qn(λ
t)

[
n

λ

]
sλ.

(b)
n∏

i=1

H(qi−1) =
∑
λ

qn(λ)
[
n

λt

]
sλ.



4

(c)
∏
i,j≥1

(1 + xjq
i−1) =

∑
λ

qn(λ
t)

Hλ(q)
sλ(x).

(d)
∏
i,j≥1

(1− xjq
i−1)−1 =

∑
λ

qn(λ)

Hλ(q)
sλ(x),

where Hλ(q) =
∏
x∈λ

(1− qh(x)) is the hook polynomial.

3. We set y1 = . . . = yn = t/n, yi = 0, i > n, and take the limit as n → ∞. Prove (a)
1

n|λ|

(
n

λ

)
→

∏
x∈λ

h(x)−1 =: h(λ)−1.

(b)
∏
i

(
1 +

xit

n

)n

→
∏
i

exp(xit) = exp(e1t) =
∑
λ

sλ
h(λ)

t|λ|.

(c) en1 =
∑
|λ|=n

n!

h(λ)
sλ ⇔ ⟨en1 , sλ⟩ = n!/h(λ).

4. Prove that the number of standard tableaux of shape λ ∈ P(n) equals Kλ,(1n) =
⟨sλ, hn1 ⟩ = n!/h(λ).

5. Prove that ⟨hn, pλ⟩ = 1 and ⟨en, pλ⟩ = ελ := (−1)|λ|+ℓ(λ) for any λ ∈ P(n).
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1. Let H(t) = (1− tr)/(1− t)r, r ≥ 2. Prove (a) hn =
(
n+r−1
r−1

)
−
(
n−1
r−1

)
.

(b) pn = 0 if n ≡ 0 (mod r), and pn = r if n ̸≡ 0 (mod r).

(c)
∑
λ

z−1
λ rℓ(λ) =

(
n+ r − 1

r − 1

)
−

(
n− 1

r − 1

)
, where the sum is taken over the set of partitions

of n whose parts are not divisible by r. In particular, for r = 2 we get
∑
λ

z−1
λ 2ℓ(λ) = 2,

where the sum is taken over the set of partitions of n all of whose parts are odd.
2. Let pn = ann/n!, n ≥ 1. Prove (a) if t = x exp(−x), then P (t) = a exp(x)/(1− x).

(b) hn =
a(a+ n)n−1

n!
, en =

a(a− n)n−1

n!
.

3. Let hn = n, n ≥ 1. Prove that
(a) the sequence (pn) is periodic with period 6.
(b) the sequence (en) is periodic with period 3.

4. Prove that
∑
θ

z−1
θ =

∑
σ

z−1
σ =

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n
, where the first sum is taken over

all the partitions of 2n into even parts, while the second sum is taken over all the partitions
of 2n into odd parts.
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5. For any λ ∈ P(n) we set Mλ(x) :=
1

n!

∑
w∈Sn

w(xλ), where x = (x1, . . . , xn). Prove that

the following statements are equivalent:
(a) λ ≥ µ;
(b) Mλ(x) ≥Mµ(x) for any x = (x1, . . . , xn) ∈ Rn

+.
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1. For any f ∈ Λ we define D(f) : Λ → Λ by ⟨D(f)u, v⟩ = ⟨u, fv⟩ for any u, v ∈ Λ. Then
D : Λ → End(Λ) is a ring homomorphism. We denote D(sµ) by Dµ. Prove that
(a) for any f ∈ Λ, f(x, y) =

∑
µDµf(x) · sµ(y).

(b) D(hλ)mµ = 0 unless µ = λ∪ ν (that is, µ is the union of reordered parts of λ and ν), in
which case D(hλ)mµ = mν .
(c) For any f(x0, x1, . . .) ∈ Λ, (D(hn)f) (x1, x2, . . .) is the coefficient of xn0 in f .
2. Prove that (a) D(pn)hN = hN−n, that is D(pn) =

∑
r≥0 hr

∂
∂hn+r

, where we view the

symmetric functions as polynomials in hi, i ≥ 0.
(b) D(pn) = (−1)n−1

∑
r≥0 er

∂
∂en+r

.

(c) D(pn) = n ∂
∂pn

. In other words, if f ∈ Λ is written as a polynomial f = φ(p1, p2, . . .),

then D(f) = φ( ∂
∂p1
, 2 ∂

∂p2
, . . .) is a linear differential operator with constant coefficients.

3. Prove that (a) for f ∈ Λm, g ∈ Λn, we have ω(f ◦ g) = f ◦ (ωg) if n is even, and
ω(f ◦ g) = (ωf) ◦ (ωg) if n is odd.
(b) f ◦ (−g) = (−1)m(ωf) ◦ g.
(c) pλ ◦ pµ = pµ ◦ pλ = pλ◦µ, where λ ◦ µ is the partition with parts λi · µj.
(d) ω(hr ◦ ps) = (−1)r(s−1)er ◦ ps.

4. Prove that f ◦ (g + h) =
∑

µ((Dµf) ◦ g)(sµ ◦ h) for any f, g, h ∈ Λ.

5. Prove that hn ◦ (gf) =
∑

|λ|=n(sλ ◦ g)(sλ ◦ f), and en ◦ (gf) =
∑

|λ|=n(sλ ◦ g)(sλt ◦ f).
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1. Let ∆ = det ((1− xiyj)
−1)1≤i,j≤n (Cauchy determinant). Prove that

∆ = aρ(x)aρ(y)
n∏

i,j=1

(1− xiyj)
−1 =

∑
λ

aλ+ρ(x)aλ+ρ(y) (the sum is taken over all partitions

of length at most n).
2. Prove that for a partition λ = (imi) = (λ1 ≥ λ2 ≥ . . .) we have

q|λ|+2n(λ)
∏

φmi
(λ)(q−1) =

∏
qλ

t
1+...+λt

r(1− qν
t
r−λt

r),

where the second product is taken over r = λ1, λ2, . . ., and ν = (λ1, . . . , λk−1) for r =
λk. Furthermore, λt stands for the dual partition (corresponding to the transposed Young
diagram), and φm(t) := (1− t) · · · (1− tm).
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3. Construct a bijection between the set of partitions λ whose Young diagram is contained
in the k× ℓ-box and the set of sequences of nonnegative integers (a1, . . . , am; b0, . . . , bm) such
that

∑
ai = k,

∑
bj = ℓ, and a1, . . . , am, b1, . . . , bm−1 are all positive, but b0 and bm can

possibly vanish.
4. Fix a complete flag 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vk+ℓ = Ck+ℓ. We define the Schubert cell

Xλ ⊂ Gr(k, k + ℓ) as the set of all k-dimensional subspaces U ⊂ Ck+ℓ such that

dim(U ∩ Vb0) = 0, dim(U ∩ Vb0+a1) = a1,

...

dim(U ∩Vb0+a1+...+bi−2+ai−1+bi−1
) = a1+ . . .+ ai−1, dim(U ∩Vb0+a1+...+bi−1+ai) = a1+ . . .+ ai,

...

dim(U∩Vb0+a1+...+bm−2+am−1+bm−1) = a1+. . .+am−1, dim(U∩Vb0+a1+...+bm−1+am) = a1+. . .+am.

Prove that a) Gr(k, k + ℓ) =
⊔

λXλ.
b) Xλ is an orbit in Gr(k, k + ℓ) of the Borel subgroup of GL(k + ℓ,C) preserving the

above complete flag.
c) Xµ ⊂ Xλ iff µ ⊂ λ, i.e. the Young diagram of µ is contained in the Young diagram of

λ.
5. Construct an isomorphism Xλ ≃ C|λ|.
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1. Let ℓ(λ) ≤ n. We set d := (n− 1)|λ|. Prove
(a) (sλ ◦ s(n−1))(x1, x2) = sλ(x

n−1
1 , xn−2

1 x2, . . . , x
n−1
2 ) = x

(n−1)|λ|
2 · sλ(qn−1, qn−2, . . . , q, 1) =:∑

n1+n2=d cn1,n2s(n1,n2)(x1, x2), where q = x1x
−1
2 , and cn1,n2 ∈ N.

(b) sλ(q
n−1, qn−2, . . . , q, 1) =:

∑d
i=0 aiq

i is a unimodal palindromic polynomial in q, that is
0 ≤ a0 ≤ a1 ≤ . . . ≤ a⌊ d

2
⌋, and ad−i = ai.

(c)
[
n
λ

]
is a unimodal palindromic polynomial in q for any n, λ.

2. We set Φ(x1, . . . , xn) :=
∑

λ sλ(x1, . . . , xn) (the sum is taken over all the partitions of
length ≤ n). Prove that
(a) Φ(x1, . . . , xn, y) =

∑
λ,µ y

|λ−µ|sµ(x1, . . . , xn) (the sum is taken over all the pairs of parti-

tions λ ⊃ µ such that ℓ(µ) ≤ n, and λ− µ is a horizontal strip).
(b)

∑
λ,µ y

|λ−µ|sµ(x1, . . . , xn) =
∑

µ,ν y
|µ−ν|(1 − y)−1sµ(x1, . . . , xn) (the right hand sum is

taken over all the pairs of partitions µ ⊃ ν such that ℓ(µ) ≤ n, and µ − ν is a horizontal
strip).
(c)

∑
µ,ν y

|µ−ν|(1− y)−1sµ(x1, . . . , xn) =∑
ν,r y

r(1− y)−1hr(x1, . . . , xn)sν(x1, . . . , xn) =

(1− y)−1
∏n

i=1(1− xiy)
−1Φ(x1, . . . , xn) (the middle sum is taken over all the partitions ν of

length ≤ n and all r ≥ 0).
(d)

∑
λ sλ =

∏
i(1 − xi)

−1
∏

i<j(1 − xixj)
−1 (the sum is taken over all the partitions). In
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other words, for a vector space V, Sym•(V ⊕ Λ2V ) is a direct sum of all the irreducible
polynomial representations of GL(V ) with multiplicities 1 (a model).

3. Prove (a) (
∑

µ sµ)(
∑∞

0 er) =
∑

λ sλ (the left hand sum is taken over all the even
partitions µ, i.e. such that all the parts are even; while the right hand sum is taken over all
the partitions λ).
(b)

∑
µ even sµ =

∏
i(1− x2i )

−1
∏

i<j(1− xixj)
−1.

(c) (
∑

νt even sν)(
∑∞

0 hr) =
∑

λ sλ.
(d)

∑
νt even sν =

∏
i<j(1− xixj)

−1.

4. Prove (a)
∏

i<j(1 + xixj)
−1 =

∑
ν(−1)|ν|/2sν (the sum is taken over all the diagrams ν

with columns of even heights).
(b)

∏
i(1− xi)

−1
∏

i<j(1 + xixj)
−1 = (

∑∞
0 hr)(

∑
ν(−1)|ν|/2sν).

(c) (
∑∞

0 hr)(
∑

ν(−1)|ν|/2sν) =
∑

λ(−1)f(λ)sλ, where f(λ) =
∑

i⌊
λt
i

2
⌋.

(d)
∏

i(1− xi)
−1

∏
i<j(1 + xixj)

−1 =
∑

λ(−1)n(λ)sλ.

5. Prove (a)
∑

λ t
c(λ)sλ =

∏
i(1 − txi)

−1
∏

i<j(1 − xixj)
−1 (the sum is taken over all the

partitions λ, and c(λ) is the number of columns of odd height in λ).

(b)
∑
λ

tr(λ)sλ =
∏
i

1 + txi
1− x2i

∏
i<j

1

1− xixj
(the sum is taken over all the partitions λ, and r(λ)

is the number of rows of odd length in λ).
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1. Recall that K = M(s,m) is the Kostka transition matrix from the monomial base to
the Schur base. Prove that (K−1)λ,(1n) = ελ · ℓ(λ)!/

∏
imi!, where λ = (imi) is a partition of

n.
2. Let X :=M(p, s) (the character table of the symmetric group Sn), and L :=M(p,m).

Prove that
(a) XX t = z, where zλµ = δλµzλ.
(b) XJ = εX, where ελµ = δλµελ.
(c) L ∈ U− (i.e. Lλµ = 0 unless λ ≤ µ).
(d) Lµµ =

∏
imi!, where µ = (imi).

(e) Lλµ/Lµµ ∈ Z.
(f) X = LK−1, K−1JK = L−1εL, KtK = Ltz−1L.
(g) M(p, e) = εzL∗, M(p, h) = zL∗, where L∗ = (Lt)−1.
3. We denote by Λn

+ ⊂ Λn the submonoid N⟨sλ⟩λ∈P(n), and Λ+ =
⊕

n Λ
n
+. We have

hλ, eλ, sν/µ ∈ Λ+ for any λ, µ, ν. For f, g ∈ Λn we say f ≥ g when f − g ∈ Λn
+. For

λ, µ ∈ P(n) prove that the following statements are equivalent:
(a) λ ≥ µ.
(b) sλ ≤ hµ.
(c) sλt ≤ eµ.
(d) hλ ≤ hµ.
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(e) eλ ≤ eµ.
(f) M(e,m)λtµ > 0.
(g) Kλµ > 0.
(Hint: the key claim is (a)⇒(d). Then we may assume λ = Rijµ (a raising operator) and
apply the Jacobi-Trudi identity s(µi,µj) = hµi

hµj
− hµi+1hµj−1).

4. Let Oλ ⊂ Matn×n denote the set (conjugacy class) of nilpotent matrices with Jordan
blocks of sizes λ1, λ2, . . . Prove that Oλ ⊃ Oµ if and only if λ ≥ µ.
5. Let GrN be the positive affine Grassmannian: the set of sublattices (i.e. C[[z]]-

submodules of finite codimension) in C[[z]]N . For a partition λ let GrλN be the set of sublattices
L ⊂ C[[z]]N such that the nilpotent operator z on the quotient C[[z]]N/L has Jordan blocks
of sizes λ1, λ2, . . . Prove that GrλN ⊃ GrµN if and only if λ ≥ µ.
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1. (a) For partitions λ, µ, we denote by λµ (resp. λ⊗ µ) a partition with parts λiµi (resp.
min(λi, µj)). Prove that (λµ)t = λt ⊗ µt.
(b) LetM,N be finite O-modules of types µ, ν. Prove that the type ofM⊕N (resp.M⊗N)
is µ ∪ ν (resp. µ⊗ ν).
2. Prove that the structure constant in the Hall algebra H(O)

Gλ
µ(1m)(q) = qn(λ)−n(µ)−n(1m)

∏
i≥1

[λt
i−λt

i+1

λt
i−µt

i

]
q−1

.

3. Prove (a) Rλ(1, t, . . . , t
n−1; t) = tn(λ)vn(t), where vn(t) =

∏n
i=1

1−ti

1−t
.

(b) Qλ(1, t, . . . , t
n−1; t) = tn(λ)φn(t)/φm0(t), where m0 = n− ℓ(λ), and φn(t) = vn(t)(1− t)n.

As n→ ∞, we get in the limit Qλ(1, t, t
2, . . . ; t) = tn(λ).

4. Prove
(a) Pλ(x1, . . . , xn; t) = vλ(t)

−1
∏

i<j(1− tRji)sλ(x1, . . . , xn) =
∏

λi>λj
(1− tRji)sλ(x1, . . . , xn),

where vλ(t) =
∏

i≥0 vmi
(t) for λ = (imi) (starting from i = 0, so that m0 = n− ℓ(λ)).

(b) P(n) =
∑n−1

r=0 (−t)rs(n−r,1r).

5. Prove (a)
n∑

i=1

∏
j ̸=i

xj − txi
xj − xi

=
vn(t)

vn−1(t)
=

1− tn

1− t
.

(b)
n∑

i=1

∏
j ̸=i

(
1− xi

xj

)−1

= 1.

(c) Let (a1, . . . , an) ∈ Nn. We define c(a1, . . . , an) as the constant term of
∏

1≤i ̸=j≤n

(
1− xj

xi

)aj

.

Then c(a1, . . . , an) =
n∑

i=1

c(a1, . . . , ai − 1, . . . , an).

(d) c(a1, . . . , an) = (a1 + . . .+ an)!/a1! · · · an!.
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Exercises on symmetric functions 02.04.2024

1. Prove the following formulas for the dimension χλ(1) of an irreducible Sn-module:
(a) χλ(1) is the coefficient of xµ in (

∑
xi)

n
∑

w∈Sn
ε(w)xwρ, where µ = λ+ ρ.

(b) χλ(1) = n! det (1/(µi − n+ j)!).
(c) χλ(1) = n!

µ!
∆(µ), where µ! =

∏
i µi!, and ∆(µ) =

∏
i<j(µi − µj).

2. Let ν = (r, 1n−r). Prove the following formulas for the character value χλ
ν on an r-cycle:

(a) χλ
ν is the coefficient of xµ in (

∑
xri )(

∑
xi)

n−r
∑

w∈Sn
ε(w)xwρ.

(b) χλ
ν =

∑
i

(n− r)!∆(µ1, . . . , µi − r, . . . , µn)

µ1! . . . (µi − r)! . . . µn!
.

(c)
χλ
ν

χλ(1)
=

(n− r)!

n!

n∑
i=1

µi!

(µi − r)!

∏
j ̸=i

µi − µj − r

µi − µj

.

(d)
−r2hνχλ

ν

χλ(1)
=

n∑
i=1

µi(µi − 1) . . . (µi − r + 1)φ(µi − r)/φ′(µi), where φ(t) =
∏

i(t− µi), and

hν = n!/zν = n!/r(n− r)!.

(e) −r2hνχλ
ν

χλ(1)
is the coefficient of t−1 in the Taylor expansion of

t(t− 1) · · · (t− r + 1)φ(t− r)/φ(t) in powers of t−1.

(f) If r = 2, then hνχλ
ν

χλ(1)
= n(λt)− n(λ).

3. Prove (a)
∑

λ(χ
λ
ν)

2 = zν .
(b) sλ ∗ sλ =

∑
ν z

−1
ν (χλ

ν)
2pν (inner product).

(c)
∑

|λ|=n sλ ∗ sλ =
∑

|ν|=n pν .

(d)
∑

λ sλ ∗ sλ =
∏

k≥1(1− pk)
−1.

(e)
∏

i,j,k(1− xiyjzk)
−1 =

∑
λ,µ sλ(x)sµ(y)(sλ ∗ sµ)(z).

(f)
∏

i,j,k(1 + xiyjzk) =
∑

λ,µ sλ(x)sµt(y)(sλ ∗ sµ)(z).
4. Recall (Problem 2, 12.03.2024) that Φ =

∑
λ sλ.

(a) Prove Φ =
∏
n odd

exp

(
pn
n

+
p2n
2n

) ∏
n even

exp

(
p2n
2n

)
.

(b) Set φ :=
∑

|λ|=n χ
λ. Prove that the value at a permutation of the cycle type ν is

given by φ(ν) = ⟨Φ, pν⟩ =
∏

i≥1 a
(mi(ν))
i , where a

(m)
i /m! is the coefficient of tm in the series

exp(t+ it2/2) or exp(it2/2) depending on whether i is odd or even.
(c) Prove that φ(ν) = 0 if the cycle type ν has an odd number of 2r-cycles for some r.

5. Set ψ :=
∑
χµ, where the sum is taken over all the even partitions of 2n (into even

parts). Prove that

(a) the value at a permutation of the cycle type ν is given by ψ(ν) =
∏

i≥1 b
(mi(ν))
i , where

b
(m)
i /m! is the coefficient of tm in the series exp(t+it2/2) or exp(it2/2) depending on whether
i is even or odd.
(b) ψ(ν) = 0 if the cycle type ν has an odd number of 2r − 1-cycles for some r ≥ 1.
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(c) ψ(1) = (2n)!
2nn!

.

(d) ψ = IndS2n
Bn

(1), where Bn is the centralizer in S2n of a permutation of the cycle type (2n).

Exercises on symmetric functions 09.04.2024

1. We identify Λ ⊗Z Λ with the ring of symmetric functions in variables x, y : f ⊗ g 7→
f(x)g(y). We define a coproduct ∆: Λ → Λ ⊗Z Λ by (∆f)(x, y) = f(x, y). We define a
counit ε : Λ → Z requiring that ε(Λn) = 0 for n > 0, and ε(1) = 1. Prove that
(a) ∆hn =

∑
0≤k≤n hk ⊗ hn−k.

(b) ∆en =
∑

0≤k≤n ek ⊗ en−k.
(c) ∆pn = pn ⊗ 1 + 1⊗ pn (i.e. pn are primitive).
(d) ∆sλ =

∑
µ sλ/µ ⊗ sµ.

2. We equip Λ⊗Z Λ with a scalar product such that ⟨f1 ⊗ g1, f2 ⊗ g2⟩ = ⟨f1, f2⟩ · ⟨g1, g2⟩.
Prove that ∆: Λ → Λ⊗Z Λ is adjoint to the multiplication m : Λ⊗Z Λ → Λ, and the counit
ε : Λ → Z is adjoint to the unit e : Z → Λ. In other words, the Hopf algebra Λ is selfdual.

3. Prove that (notation of 27.02.2024) D(f)(gh) =
∑

i(D(f
(1)
i )g) · (D(f

(2)
i )h), where

∆f =
∑

i f
(1)
i ⊗ f

(2)
i .

4. Prove that any primitive element p ∈ Λn (i.e. ∆p = p⊗ 1+1⊗ p) is proportional to pn.
5. Define an involution ω̃ = (−1)nω on Λn. Prove that ω̃ is an antipode, i.e. m ◦ (ω̃⊗ Id) ◦

∆ = m ◦ (Id⊗ω̃) ◦∆ = e ◦ ε : Λ → Λ.

Exercises on symmetric functions 16.04.2024

1. Let F = Q(q, t), and ΛF = Λ⊗Z F . Let ∆: ΛF → ΛF ⊗ ΛF be the scalar extension of
∆ of 09.04.2024. Let ⟨, ⟩ be an F -valued nondegenerate symmetric bilinear form on ΛF such
that ⟨Λn

F ,Λ
m
F ⟩ = 0 for m ̸= n. Prove that the following conditions are equivalent:

a) ⟨∆f, g ⊗ h⟩ = ⟨f, gh⟩ for any f, g, h ∈ ΛF .
b) ⟨pλ, pµ⟩ = δλµzλζλ for any λ, µ for a multiplicative family ζλ ∈ F× (i.e. ζλ = ζ(λ1)ζ(λ2) · · · ζ(λℓ)).
c) There is an algebra homomorphism χ : ΛF → F such that χ(pn) ̸= 0 for n ≥ 1 and
⟨f, g⟩ = χ(f ∗ g) (inner product).
d) The dual basis {m∗

λ} of the monomial basis {mλ} is multiplicative (i.e.m∗
λ = m∗

(λ1)
m∗

(λ2)
· · ·m∗

(λℓ)
).

2. We set (a; q)µ =
∏

i≥1(a; q)µi
, where the Pochhammer symbol (a; q)m := (a; q)∞/(aq

m; q)∞ =∏m−1
r=0 (1− aqr). Prove that

a) gn(x; q, t) =
∑
|µ|=n

(t; q)µ
(q; q)µ

mµ(x).

b) (q; q)ngn(x; q, t) ∈ Λ[q, t].
3. Prove that ωq,tgr(x; 0, t

−1) = (−t)−rgr(x; 0, q).
4. Prove that the coefficient of mµ in Dn(X; q, t)mλ equals

aλµ(X; q, t) =
∑

(−1)wKπµ

∏n
i=1(1 +Xqαitn−i), where

Dn(X; q, t) = aρ(x)
−1

∑
w∈Sn

(−1)wxwρ
∏n

i=1(1 + Xt(wρ)iTq,xi
), the sum runs over all the
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triples (w, α, π) such that w is a permutation in Sn, and α ∼ λ is a composition in Nn, and
π is a partition with α + ρ = w(π + ρ), and Kπµ is a Kostka number.
5. Prove that in case λ1 = µ1, we have aλµ(X; q, t) = (1 + Xqλ1tn−1)aλ̄µ̄(X; q, t), where

λ̄ = (λ2, λ3, . . .) and µ̄ = (µ2, µ3, . . .).

Exercises on symmetric functions 23.04.2024

1. Prove that for r ≥ 0 and x = (x1, . . . , xn) we have

(t− 1)
n∑

i=1

Ai(x; t)x
r
i = tngr(x; 0, t

−1)− δ0r,

where
∑n

i=1Ai(x; t)Tq,xi
= D1

n, and hence Ai(x; t) =
∏

j ̸=i
txi−xj

xi−xj
.

2. Let x = (x1, . . . , xn), y = (y1, . . . , yn), Π = Π(x, y; q, t), and
Π0 = ωq,tΠ =

∏
1≤i,j≤n(1 + xiyj). Prove that

a) Π−1Tq,xi
Π =

∑
r≥0 gr(y; 0, t

−1)trxri and Π−1
0 Tq,xi

Π0 =
∑

r≥0(−1)rgr(y; 0, q)x
r
i .

b) Π−1ẼΠ =
∑

r≥0 gr(x; 0, t
−1)gr(y; 0, t

−1)tr and Π−1
0 ẼΠ0 =

∑
r≥0(−1)rgr(x; 0, t

−1)gr(y; 0, q),

where Ẽ = Ẽq,t := t−n(1 + (t− 1)D1
n) acts on symmetric functions in the x variables.

c) ωq,t(Π
−1Ẽq,tΠ) = Π−1

0 Ẽt−1,q−1Π0 and ωq,tẼq,t = Ẽt−1,q−1ωq,t, where ωq,t acts on the x vari-
ables.

3. Prove that for any λ, the coefficient of xλ1
1 in Pλ(x; q, t) equals Pλ̄(x̄; q, t), where λ̄ =

(λ2, λ3, . . .) and x̄ = (x2, x3, . . .).
4. For any λ set fλ(q, t) = (1− t)

∑
i≥1(q

λi − 1)ti−1. Prove that
a) fλ(q, t) = fλT (t, q).
b) The eigenvalues of the operator (t− 1)E (where E is the limit of En = t−nD1

n−
∑n

i=1 t
−i)

are fλ(q, t
−1).

5. Here is an alternative approach to the computation of ωq,tPλ(x; q, t). We have Ẽ =
1 + (t− 1)E. Prove that
a) Ẽt−1,q−1ωq,tPλ(q, t) = (1 + fλT (t−1, q))ωq,tPλ(q, t).
b) ⟨ωPλ(q, t), PλT (t, q)⟩ = 1.
c) ⟨ωq,tPλ(q, t), PλT (t, q)⟩t,q = 1.
d) ωq,tPλ(x; q, t) = QλT (x; t, q).

Exercises on symmetric functions 30.04.2024

1. A connected skew diagram θ is called a border p-strip if |θ| = p, and it does not contain
a 2× 2-square. Let λ, µ be partitions of length ≤ m such that λ ⊃ µ, and the complement
λ− µ is a border p-strip. Let ξ = λ+ ρm, η = µ+ ρm, where ρm = (m− 1,m− 2, . . . , 1, 0).
Prove that for certain j ≤ k ≤ m we have ξj = ηk + p, ξj+r = ηj+r−1 (1 ≤ r ≤ k − j), and
ξi = ηi for i < j or j > k.
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2. Assume moreover that for any 0 ≤ r ≤ p−1, the partition ξ hasmr parts ξi congruent to

r modulo p. Let us write ξi = pξ
(r)
j + r (1 ≤ j ≤ mr), where ξ

(r)
1 > ξ

(r)
2 > . . . > ξ

(r)
mr ≥ 0. We

set λ
(r)
j = ξ

(r)
j −mr+j, so that λ

(r) is a partition. The collection λ∗ := (λ(0), λ(1), . . . , λ(p−1)) is
called the p-quotient of λ. Prove that λ∗ is independent ofm ≥ ℓ(λ) up to cyclic permutation.
3. Let us remove a border p-strip from λ so that what remains is the diagram of a partition.

We repeat this procedure as long as it is possible. What remains is called the p-core λ̃ of λ.
Prove that it is independent of the choices involved. We write λ ∼

p
ν if λ̃ = ν̃. For example,

2-cores are exactly partitions ρm, m ∈ N.
4. Prove that (a) λ ∼

p
ν iff η ≡ wξ (mod p) for a permutation w ∈ Sm, where ξ =

λ+ ρm, η = ν + ρm, and m ≥ ℓ(λ), ℓ(ν).
(b) λ ∼

p
ν iff λt ∼

p
νt.

5. Prove that a partition λ is uniquely defined by its p-quotient λ∗ and its p-core λ̃.

Exercises on symmetric functions 07.05.2024

1. Prove that (a) The generating function for the partitions with a given p-core λ̃ is∑
µ̃=λ̃ t

|µ| = t|λ̃|P (tp)p, where P (t) =
∏∞

n=1(1 − tn)−1 is the generating function of all the
partitions.

(b) The generating function for the p-cores is
∑
t|λ̃| = P (t)/P (tp)p =

∏∞
n=1

(1−tnp)p

1−tn
.

(c) In particular, for p = 2, we get
∑∞

m=1 t
m(m−1)/2 =

∏∞
n=1

1−t2n

1−t2n−1 (a specialization of the
Jacobi triple product identity).

2. Prove that (a) h(λ) = p|λ
∗|h(λ∗)h′(λ), where h(λ) =

∏
x∈λ h(x) is the product of the

hook lengths, h(λ∗) =
∏p−1

r=0 h(λ
(r)), and h′(λ) is the product of those hook lengths h(x)

which are not divisible by p.
(b) If p is a prime, then h′(λ) ≡ ±h(λ̃) (mod p).
(c) If p is a prime, then λ is a p-core iff h(λ) is relatively prime to p.

3. The content polynomial cλ(t) :=
∏

x∈λ(t + c(x)). Prove that cλ(t+m)
cλ(t+m−1)

=
∏m

i=1
t+ξi

t+m−i
,

where m ≥ ℓ(λ), and ξi = λi +m− i.
4. Let p be a prime. Prove that cλ(t) ≡ cλ̃(t)(t

p − t)|λ
∗| (mod p).

5. Let p be a prime. Let |λ| = |µ|. Prove that λ ∼
p
µ ⇔ cλ(t) ≡ cµ(t) (mod p).

Exercises on symmetric functions 14.05.2024

1. Let v1, . . . , vn ∈ V be distinct vectors in a real vector space equipped with a positive
definite scalar product (, ). Prove that det(q(vi,vj)) ̸≡ 0 as a function of q.
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2. a) Let λ ⊃ µ be partitions such that λ \ µ is a horizontal strip. Prove that

L(φλ/µ) =
t− q

1− q

∑
1≤i≤j≤ℓ(λ)

(qλi−λj − qλi−µj − qµi−λj+1 + qµi−µj+1)tj−i

and

φλ/µ =
∏

1≤i≤j≤ℓ(λ)

f(qλi−λj tj−i)f(qµi−µj+1tj−i)

f(qλi−µj tj−i)f(qµi−λj+1tj−i)
,

where f(u) = (tu; q)∞/(qu; q)∞.
b) Let λ ⊃ µ be partitions such that λ \ µ is a horizontal strip. Prove that

L(ψλ/µ) =
t− q

1− q

∑
1≤i≤j≤ℓ(µ)

(qµi−µj − qλi−µj − qµi−λj+1 + qλi−λj+1)tj−i

and

ψλ/µ =
∏

1≤i≤j≤ℓ(µ)

f(qµi−µj tj−i)f(qλi−λj+1tj−i)

f(qλi−µj tj−i)f(qµi−λj+1tj−i)
.

c) Let λ ⊃ µ be partitions such that λ \ µ is a vertical strip. Prove that

L(φ′
λ/µ) = (t− q)

λi=µi+1, λj=µj∑
1≤i<j<∞

qµi−µj(tj−i − tj−i−1)

and

φ′
λ/µ =

λi=µi+1, λj=µj∏
1≤i<j<∞

(1− qλi−λj tj−i−1)(1− qµi−µj tj−i+1)

(1− qλi−λj tj−i)(1− qµi−µj tj−i)
.

d) Recall that

L(ψ′
λ/µ) =

(t− q)(t− 1)

qt

λi=µi, λj=µj+1∑
1≤i<j<∞

qµi−µj tj−i

and

ψ′
λ/µ =

λi=µi, λj=µj+1∏
1≤i<j<∞

(1− qµi−µj tj−i−1)(1− qλi−λj tj−i+1)

(1− qµi−µj tj−i)(1− qλi−λj tj−i)
.

3. Let λ = (λ1, λ2, . . . , 0, 0, . . .) be a partition viewed as an infinite sequence. SetGλ(q, t) =

(1 − t)2
∑

1≤i<j<∞(1 − qλi−λj tj−i−1). Prove that Gλ(q,t)
(1−q)(1−t)

=
∑

x∈λ q
a(s)tl(s) and Gλ(q, t) =

GλT (t, q).
4. For a partition λ of length ℓ(λ) ≤ n, set t = qk and

vλ(q, t) =
∏

1≤i<j≤n

(qλi−λj tj−i; q)k, v
′
λ(q, t) =

∏
1≤i<j≤n

(qλi−λj+1tj−i−1; q)k.
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Prove that

εu,t(Pλ) = tn(λ)vλ(q, t)
n∏

i=1

(ut1−i; q)λi

(t; q)λi+k(n−i)

,

εu,t(Qλ) = tn(λ)v′λ(q, t)
n∏

i=1

(ut1−i; q)λi

(q; q)λi+k(n−i)

.

5. For a partition λ of length ℓ(λ) ≤ n, prove that

εtn,t(Pλ) = tn(λ)
∏

1≤i<j≤n

(tj−i+1; q)λi−λj

(tj−i; q)λi−λj

,

εqtn−1,t(Qλ) = tn(λ)
∏

1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

.

Exercises on symmetric functions 21.05.2024

1. Recall that H(t) =
∑

r≥0 hrt
r is the generating function of complete symmetric func-

tions. Let H(t) =
∏∞

i=0
1−bqit
1−aqit

. Recall from Problem 5 of 30.01.2024 that hr =
∏r

i=1
a−bqi−1

1−qi
,

er =
∏r

i=1
aqi−1−b
1−qi

, pr =
ar−br

1−qr
. Prove that

∑
m≥0

am
(qm+1; q)∞
(a−1bqm; q)∞

=
(b; q)∞(q; q)∞

(a; q)∞(a−1b; q)∞
.

2. Let 0 < q < 1 and let f be a function on [0, 1]. We define the q-integral
∫ 1

0
f(x)dq(x) :=

(1− q)
∑∞

r=0 q
rf(qr) (assuming that the RHS converges). Similarly, if f(x) = f(x1, . . . , xn)

is a function on the cube Cn := [0, 1]n, we define
∫
Cn f(x)dq(x) := (1− q)n

∑
α∈Nn q|α|f(qα),

where α = (α1, . . . , αn), |α| = α1+ . . .+αn, and f(q
α) = f(qα1 , . . . , qαn). Prove the following

q-analogue of the Euler formula for his beta-integral (r, s are positive integers):

Bq(r, s) :=

∫ 1

0

xr−1(qx; q)s−1dqx = Γq(r)Γq(s)/Γq(r + s),

where Γq(r) := (q; q)r−1/(1− q)r−1 is the q-gamma function.
3. Let x = (x1, . . . , xn), and t = qk. We set

∆∗(x; q, t) :=
∏

1≤i<j≤n

k−1∏
r=0

(xi − qrxj)(xi − q−rxj) = (−1)Aq−B(x1 · · ·xn)k(n−1)∆(x; q, t),

∆∗
r,s(x; q, t) := ∆∗(x; q, t)

n∏
i=1

xr−1
i (qxi; q)s−1, Iλ :=

1

n!

∫
Cn

Pλ(x; q, t)∆
∗
r,s(x; q, t)dqx,
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where A = kn(n− 1)/2, and B = k(k− 1)n(n− 1)/4. For instance, I0 is a q-analogue of the
famous Selberg integral. We define the coefficients cλβ so that Pλ∆

∗ =
∑

β cλβx
β (the sum

over β ∈ Nn such that |β| = |λ|+ kn(n− 1)). Prove that

n!Iλ =
∑
β

cλβ

∫
Cn

n∏
i=1

xr+βi−1(qxi; q)s−1dqx =
∑
β

cλβ

n∏
i=1

Γq(r + βi)Γq(s)

Γq(r + s+ βi)
= Bq(r, s)

n
∑
β

cλβ(q
r; q)β

(qr+s; q)β
,

where (a; q)β :=
∏
(a; q)βi

.

4. Prove that a)
∑
µ

εu,t(Qµ)Pµ(x) =
n∏

i=1

(uxi; q)∞
(xi; q)∞

.

b) εu,t(Qµ)⟨Pµ, Pµ⟩′n equals〈
n∏

i=1

(uxi; q)∞
(xi; q)∞

, Pµ

〉′

n

=

[
1

n!
Pλ(x; q, t)(x1 · · ·xn)(n−1)k+a∆(x; q, t)

n∏
i=1

(ux−1
i ; q)∞

(x−1
i ; q)∞

]
1

=

[
1

n!
(−1)AqB(x1 · · ·xn)a

∑
β

cλβx
β

n∏
i=1

(ux−1
i ; q)∞

(x−1
i ; q)∞

]
1

,

where µ = (µ1, . . . , µn) is the partition defined by µi = λi+(n−1)k+a for a positive integer a.

5. Prove that a)
[
xa+βi

i (ux−1
i ; q)∞/(x

−1
i ; q)∞

]
1
=

(u; q)a+βi

(q; q)a+βi

=
(u; q)a
(q; q)a

(uqa; q)βi

(qa+1; q)βi

.

b) εu,t(Qµ)⟨Pµ, Pµ⟩′n =
1

n!
(−1)AqB

(u; q)na
(q; q)na

∑
β

cλβ
(uqa; q)β
(qa+1; q)β

.

Exercises on symmetric functions 28.05.2024

1. Let ∆′(x; q, t) = ∆(x; q, t)
∏

1≤i<j≤n

1−txix
−1
j

1−xix
−1
j

=
∏

1≤i<j≤n

∏k
r=1(1−qrxix

−1
j )(1−qr−1x−1

i xj)

for t = qk. Prove that
a) [∆′(x; q, t)]1 =

∏n
i=2

[
ik
k

]
q
(or you may just assume this fact in what follows).

b)
∑
w∈Sn

w
∏

1≤i<j≤n

1− txix
−1
j

1− xix
−1
j

=
n∏

i=2

1− ti

1− t
.

c) cn := 1
n!
[∆(x; q, t)]1 =

∏n
i=2

[
ik−1
k−1

]
q
.

d) ⟨Pλ, Pλ⟩′n =
∏

1≤i<j≤n

(qλi−λj tj−i; q)∞(qλi−λj+1tj−i; q)∞
(qλi−λj tj−i+1; q)∞(qλi−λj+1tj−i−1; q)∞

=
∏

1≤i<j≤n

k−1∏
r=1

1− qλi−λj+rtj−i

1− qλi−λj−rtj−i
.

2. Prove that
1

n!

∑
β

cλβ
(uqa; q)β
(qa+1; q)β

= (−1)Aq−B+kn(µ)vλ(q, t)
n∏

i=1

(q; q)a(uq
k(1−i); q)µi

(q; q)µi+k(n−i)(u; q)a
, where

vλ(q, t) was introduced in Problem 4 of 14.05.2024.
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3. Prove that
1

n!

∑
β

cλβ
(uqa; q)β
(qa+1; q)β

= uAqEvλ(q, t)
n∏

i=1

(qu−1; q)k(i−1)(uq
a; a)λi+k(n−i)

(qa+1; q)λi+k(2n−i−1)

, where

E = −B + kn(µ) −
∑n

i=1Ci, and Ci = (i − 1)k(k(i − 1) + 1)/2, so that E = 2k2
(
n
3

)
+

k
(
n(λ) + a

(
n
2

))
.

4. Now take a = r + s− 1 and u = q1−t in the previous Problem and prove that

Iλ = qF
n∏

i=1

Γq(λi + r + k(n− i))Γq(s+ k(i− 1))

Γq(λi + r + s+ k(2n− i− 1))

∏
1≤i<j≤n

Γq(λi − λj + k(j − i+ 1))

Γq(λi − λj + k(j − i))
,

where F = k(n(λ) + 1
2
m(n− 1)) + 1

3
k2n(n− 1)(n− 2).

5. Prove that Iλ/I0 = εu,t(Pλ)εv,t(Pλ)/εw,t(Pλ), where u = qrtn−1, v = tn, and w =
qr+st2n−2.


