Семинар 1.

В вещественном векторном пространстве \mathbb{R}^3 с координатами x,y,z рассмотрим аффинные плоскости (экраны) $U_0 = \{z=1\}$, $U_1 = \{x=1\}$ и $U_2 = \{y=1\}$. В плоскости U_0 в качестве аффинных координат естественно взять координаты x и y, соответствующие координатам x и y в плоскости z=0, а в плоскости U_1 взять координаты y и z, соответствующие координатам y и z в плоскости x=0. Плоскости U_0 , U_1 и U_2 , как мы знаем, являются картами для проективной плоскости $\mathbb{P}^2 = \mathbb{P}^2(\mathbb{R})$, в которой мы ввели однородные проективные координаты $(a_0:a_1:a_2)$ такие, что $x=a_1/a_0,\ y=a_2/a_0$. Напомним, что в координатах $(a_0:a_1:a_2)$ карты U_0 , U_1 и U_2 задаются условиями $a_0 \neq 0$, $a_1 \neq 0$ и $a_2 \neq 0$ соответственно.

- **Задача 1.** Найдите явные формулы, связывающие аффинные кординаты x, y и y, z точки из \mathbb{P}^2 , лежащей на пересечении $U_0 \cap U_1$ карт U_0 и U_1 .
- **Задача 2.** В карте U_0 задана окружность $x^2 + y^2 = 1$. Найдите кривую, соответствующую ей в карте U_1 .
 - **Задача 3.** В карте U_0 задана парабола $y=x^2$. Найдите кривую, соответствующую ей в карте U_1 .

В (n+1)-мерном векторном пространстве V над полем \mathbbm{k} рассмотрим множество всех 1-мерных подпространств. Оно называется n-мерным проективным пространством над полем \mathbbm{k} и обозначается \mathbb{P}^n , или $\mathbb{P}^n(\mathbbm{k})$, или $\mathbb{P}(V)$. Проективное пространство, обозначенное через $\mathbb{P}(V)$, называется также проективизацией векторного пространство V. Всякая точка A в $\mathbb{P}(V)$ по определению есть 1-мерное подпространство в V. Любой ненулевой вектор v в этом подпространстве является его базисом, а само это подпространство называется nodnpocmpahcmbom, натянутым на вектор v и обозначается $\langle v \rangle$. В этом случае мы также пишем $A = \langle v \rangle$.

 Π ример: построенная на семинаре 1 проективная плоскость $\mathbb{P}^2(\mathbb{R})$ (то есть двумерное проективное пространство над полем \mathbb{R}) является проективизацией $\mathbb{P}(\mathbb{R}^3)$ обычного арифметического 3-мерного вещественного векторного пространства \mathbb{R}^3 .

Задача 4. Пользуясь вышеуказанными определениями, рассмотрим проективную прямую $\mathbb{P}^1 = \mathbb{P}(V)$, где V - двумерное векторное пространство над полем \mathbb{k} , и пусть e_0, e_1 - фиксированный базис в V. Проективными координатами произвольной точки $A = \langle v \rangle \in \mathbb{P}^1$ называется класс пропорциональности $(x_0 : x_1)$ пары скаляров (x_0, x_1) (скалярами называем элементы поля \mathbb{k}) таких, что $v = x_0 e_0 + x_1 e_1$. Заметим, что если заменить базис e_0, e_1 на пропорциональный ему базис $\lambda e_0, \lambda e_1$, где λ - произвольный ненулевой скаляр из поля \mathbb{k} , то проективные координаты $(x_0 : x_1)$ точки A не изменятся. Поэтому класс пропорциональности $[e_0, e_1]$ базиса e_0, e_1 , то есть множество всех базисов, пропорциональных e_0, e_1 , называется проективной системой координат в \mathbb{P}^1 .

Покажите, что для трех различных точек A_0 , A_1 , $A \in \mathbb{P}^1$ существует единственная проективная система координат $[e_0, e_1]$, в которой $A_0 = (1:0)$, $A_1 = (0:1)$, A = (1:1).