- **Задача 1.** На проективной прямой \mathbb{P}^1 даны 4 различные точки A, B, C, D и выбрана некоторая проективная система координат, в которой эти точки имеют проективные координаты $(x_1:y_1), (x_2:y_2), (x_3:y_3), (x_4:y_4)$. Введем на \mathbb{P}^1 аффинную координату t так, что точки A, B, C имеют координату $0, 1, \infty$ соответственно. Выразите аффинную координату точки D через проективные координаты $(x_1:y_1), (x_2:y_2), (x_3:y_3), (x_4:y_4)$.
- **Задача 2.** Даны две различные проективные прямые l и m в проективной плоскости, пересекающиеся в точке S, и дано перспективное отображение $f: l \xrightarrow{\sim} m$ с центром $A \not\in l \cup m$. (По определению, образом произвольной точки $X \in l_1$ при отображении F является точка $Y = (AX) \cap m$.) Докажите, что f является проективным отображением.
- **Задача 3.** Из определения перспективного отображения $f: l \xrightarrow{\sim} m$ между двумя прямыми l и m на плоскости, данного в предыдущей задаче, следует, что f(S) = S. Докажите, что, обратно, всякое проективное отображение $f: l \xrightarrow{\sim} m$, при котором точка $S = l \cap m$ отображается в себя, является перспективным отображением.
- Задача 4. Проективным репером в проективном пространстве \mathbb{P}^n называется совокупность n+2 точек $A,\ A_0,...,A_n$ в \mathbb{P}^n таких, что никакая из них не лежит в проективной оболочке любых n из оставшихся n+1 точек из этой совокупности. Докажите, что для любых проективных реперов $A,\ A_0,\ A_1$ в \mathbb{P}^1 и $A',\ A'_0,\ A'_1$ в \mathbb{P}'^1 существует единственное проективное отображение проективной прямой \mathbb{P}^1 в проективную прямую \mathbb{P}'^1 , отображающее проективный репер $A,\ A_0,\ A_1$ в \mathbb{P}^1 в проективный репер $A',\ A'_0,\ A'_1$ в \mathbb{P}'^1 , то есть такое, что $f(A)=A,\ f(A_0)=A'_0,\ f(A_1)=A'_1$.