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Abstract

We classify all solutions to the Yang—Baxter equation RiRoRi = RsRiRs in three
dimensions under a specific ansatz, which reduces the problem to solving the equation for
several smaller blocks. Then we consider multiparametric (at least four different eigenval-
ues) R-matrices, obtained through this classification, and explore the link/knot invariants
associated with them.

Introduction

Braid Groups

A braid is a homotopy class of a set of n intertwined non-intersecting strands (curves in
R3), such that a horizontal plane cross-section of any strand at any place is exactly one
point. The strands are ordered (enumerated).

We define the multiplication operation on the set of braids with a fixed number of strands:
if we take two braids a, b and connect the lower ends of a with the upper ends of b which
have the same numbers, we get a braid ab.

A set of braids from n strands with multiplication operation forms a braid group B,.

Artin presentation of the braid group
Consider a set of generators by, bs, ..., b,—1 and their inverses bfl, b;l, . ,b;&l,
bt = b thy = 1.
We impose two more sets of relations on the generators,
1. bgbm = bbg; |k —m| > 2, k, m € 1,...n — 1, commutativity
2. bpbpy1br = bpyr1brbrs1; k € 1,...n — 1, braid relation.

We obtain the Artin presentation of the braid group B,. The generator b; corresponds
to a braid where the i-th strand passes under the (i+1)-th strand, and all other strands
match the strands of the trivial braid. Similarly, the generator bl-_1 corresponds to a braid
where the i-th strand passes over the (i+1)-th strand, and all other strands match the
strands of the trivial braid.

R-matrix representations of the braid group

Consider automorphisms of the space V&3 Ry = R® Idy and Ry = Idy ® R, where
R € Aut(V ® V), Idy — identity operator acting on V.

We call an R-matrix a matrix R which satisfies the Yang-Baxter equation

RiRyRy = RyRy Ry, (1)

Using R-matrices, we get a representation pg of the braid group B,, — Aut(V®"), such
that b; — R;, where R; is a matrix acting as the identity operator on all components of
VO except V; and Vi1, and as R on components V; ® Vjy1.



Finding R-matrices

Ansatz: degree-conserving R-matrices

goan

We define degree of a basis vector {v;} as its index i:

deg{v;} = 1i.

We extend the definition of the degree to the basic vectors in the tensor product spaces
YV ®k.

deg(vi, @ Vi, @ ... @ V) 1= Zz’a.
That gives us decomposition of the space V®* imto a direct sum of its fixed degree sub-

spaces
Vd(k) = Span{v;, ® ... ®v;, |i1 + ... + i = d}

kn
G
d=k
We define a degree-conserving R-matrix! as an R-matrix for which

RVP cv? vd=2 .. 2.

A degree-conserving R-matrix is a block-diagonal matrix — every block acts on a corre-
sponding subspace Vd(Q) .

This ansatz has several advantages: a) both the R-matrix and the matrix equation (1) in
this ansatz are block-diagonal; b) some of the cubic relations arising in the blocks can be
factorized.

R-matrix blocks for dim V = 3
1) d =11 +i9 = 2,ie. (iyig) =

2)d=3,ie. (i1i2) € {(1,2),(2,1)}, B= < >
3) d=4,i.e. (ilig) S {(1,3), (2,2) }, C= s
w3

4) d = 5,i.e. (i1i2) € {(2,3),(3,2)}, D: z y)

5)d = 6,1.e. (iriz) = (3,3), F=(m).

!The degree conservation property is called ‘Additive Charge Conservation’ in [2]. We use a different notation
here to avoid unnecessary physical associations.



An R-matrix consisting of these blocks:

g 0 00O 0 0 0 0O
0Oa O b 0 0 0 0O
00 Ul 0 u9 0 us 0 O
0O c 04 0 0 0 0 O
R = 0 0 V1 0 () 0 V3 0 O
00 0 0 0 = 0 p O
00 w1 0 w9 0 w3 0 O
00 0 0 0 =z 0 w O
00 0 0 0 0 0 0 m

braid relation blocks for dim V = 3

The braid relation for such a matrix is also block-diagonal, and the blocks are indexed by
the values of the quantity Y =iy + iy + 3.
3

Z=i1+i2+i3.
3

1) 23: = 3, (iri2i3) = (1,1,1), K1 = K2 = (q)

2)23: =4, (i1i2i3) € {(1,1,2),(1,2,1),(2,1,1)}

0 0
le a b ,LQZ
c d

O O

b 0
d 0
0 ¢

o o e

L=Li-Ly-L1—Ly-Li-Ly=0

3); =5, (irigis) € {(1,1,3),(1,2,2), (1,3,1),(2,1,2),(2,2,1),(3,1,1)}

qg 0 0 0 O O up us wuz 0 0 O

0Oa 0 b 0 0 vy vy wg 0 0 O

. 0 0 (51 0 u2 U3 . w1, w2 ws 0 0 0
M=o ¢c 0o a0 o™~ 0o 0 0 abo
00 vi 0 vy w3 0O 0 0 ¢ d O

0 0 wi 0 wy ws 0 0O 0 0 0 ¢

M =M -My -My —My-M-My=0
4)2 = 6, (i1i2i3) € {(L 2, 3)a (17 3, 2)a (2? L, 3), (27 2, 2)7 (Qa 3, 1)7 (3a 1, 2)7 (37 2, 1)}
3

0 0

a b 0 0 / /

0 up 0 ug 0 wz O a@ b/ 0 0 0 00

c 0d 0 0 0 0 dd 0 0 0 00
Ni=]0 v1 0 vo 0 w3 0],Ny= 0 0 wg w2 wuz 0 O

00 0 0 o 0 ¥V 0 0 v1 vy w3 0 0

0O wgy 0 wy 0 w3 O 0 0 w wy w3 0 0O

0 0 00 ¢ 0 d 00 0 0 0 ab

N =N;-Ng-N;y—Ny-N;1-Na=0



5)23: =7, (i1i213) € {(1,3,3),(2,2,3),(2,3,2),(3,1,3),(3,2,2),(3,3,1) }

up uz 0 wuz 0 O g 0 0 0 0 O

(%1 (%) 0 v3 0 0 0 a v 0 0 0
o_|0 0 d 0o v ool _fodd o 0 0
1= w1 w2 0 w3 0 0 2 0 0 0 uyp Uz U3
0 0 ¢ 0 d 0 0 0 0 v vy w3

0 0 0 0 0 q’ 0 0 O w1 w2 w3

O=01-02-01—02-01-02=0

6); =38, (i1i2) € {(2,3,3),(3,2,3),(3,3,2)}

a b 0 g 0 0
Po=|d d 0|,B=|0 d V
0 0 ¢ 0 ¢ d

P=P P -P—-PFP-P-P=0

7) ; =9, (i1i2i3) = (3,3,3), S1 = S2 = (¢')

The braid relations for blocks 1 and 7 are trivial. We will be solving the system of rela-
tions with the help of Wolfram Mathematica in the remaining blocks 2, ..., 6 sequentially,
starting with block 2.

Symmetry Transformations

Consider the symmetry transformations of R-matrix, compatible with our ansatz.

a) Transposition R <—> RT.
Under this transformation, all blocks of the ansatz are transposed

B<—>BY c<—>CT D<—>DT. (a)

b) Rearrangement of the spaces Vi ® Vo <—> V5 ® V1, in which R operates
Ris<—>Ro1 = P1aR12Pro.

To understand the effect of this transformation on R, let’s define the reflection transfor-
mation of a matrix M relative to its center.

M<—>M°: M;} = Myi1—in+i1—j, where n is the size of M.
On the blocks of the R-matrix, this transformation acts as:

Ria<—>R91 : B<—>B°,C<—>C°,D<—>D". (b)

c) Inversion of the basis in V: {v1,ve,v3} <—> {v3,va,v1} (v; - basis in V').We are re-
denoting the indices of the matrix R {1,2,3} <—> {3,2,1}. Under inversion R<—>R*,
the blocks of R* A*, B*, C*, D*, E*, F* are related to the blocks of R in the following
way:

A* = F,F* = A, B* = D°, D* = B°,C* = C". (©)



d) Additionally, if in block C' v1 = ug = v3 = we = 0,

Ul 0 us
C=(0 vy 0],
w1 0 w3

uyp U3
wp w3
expands: any permutation of vectors in the basis becomes possible. It leads to permuta-
tions and reflections of the triples of 2 x 2 blocks and 1 x 1 blocks of R-matrix.

then it splits into two blocks: < > , (1)2) In this case, the group of symmetries

For all these symmetry transformations, the transformed R-matrix satisfies both the ansatz
conditions and the Yang-Baxter equation. Therefore, when listing R-matrices, we will not
separately consider R-matrices connected by the symmetry transformations. In addition,
we assume detR # 0.

Classification

We obtained a complete classification, which is consistent with (and slightly simplifies) the
results established in [1, 2]. We organize our results in 5 families of the R-matrices. In the
formulas below symbols ¢, r, s, t, m, p are reserved for the eigenvalues of the R-matrices
(excepting cases Bg and C'); symbols e, n, w are reserved for different roots of 1:

€= =1, 772:—1, w3:—1,w7é—1.

e Family A: multivalued R-matrices

Case A1
+7r qx 00ty 0 tz
A_(Q)7B:(q_r q0>70: (t) q 0 D:<t 0)7F:<3)
x L0 0 z
Yy

Eigenvalues: (q,r,s,t,—t) with multiplicities (3, 1, 1, 2, 2).

Case A1
0 0 ty
A=<q>,B=<q+f ‘{f),cz 0 1 0 ,D:(? tOZ),F:(s)
x 0 0 z
Y

Eigenvalues: (q,r, s, t,—t) with multiplicities (2, 2, 1, 2, 2).

Case As

A:(q),B:(? tg),c:

T

<3 o o
= O
3
OQE
)

Il
AN
=™ O
b}

N
~_
>
—~
&

Eigenvalues: (q,r,s,t,—t, m,—m,p, —p) all with multiplicity 1.



Case Az

T

0 tx 0 r 0
A:(q),B:<t 0),02 g r 0 ,D:(O T>7F:(T).
Y

Eigenvalues: (q,r,t,—t) with multiplicities (1, 4, 2, 2).

e Family B: Hecke type R-matrices (two eigenvalues ¢ and r: q # £r)

Case B1,1 (GL(3)-type ‘Drinfe’ld-Jimbo’ R-matrix)

g+r qz atr O gy g+r gz

A=(q), B=|", 0 , C= 0 ¢q 0],D= , , F'=(q).
T 0 0

y

xT

Eigenvalues: (gq,r) with multiplicities (6, 3).

Case By (GL(2|1)-type ‘Kulish-Sklyanin’ R-matrix)

g+r qr atr 0 gy qg+r qz
A:(Q)>B: r 0 , C= 0 g 0],D= r 7F:(T)'
Yy

xT

Eigenvalues: (g,r) with multiplicities (5, 4).

Case Ba1 (GL(3)-type ‘Cremmer-Gervais’ R-matrix)

q + r qQ;:CQ
qg+r qr 2 q+r qu
A:(q)>B:<_r 0)702 _;27% q U 7D:(_r O>7F:(Q>
x 2 x
r 0
qxr
Eigenvalues: (¢q,r) with multiplicities (6, 3).
Case By o (GL(2|1)-type R-matrix)
q + - 0 q2f2
+7r qx +r qx
A:(Q)7B_<q_r q0>’c _qTTuQ r u ’D:<q_’r q0)7F (Q>
T 2 T
0
qx

Eigenvalues: (g,r) with multiplicities (5, 4).

Case B3 1

g+r qu i o ¢ 0

A=(q), B=|", 0 , C= 0 ¢q O0],D= , F'=(q).
_r 0 O

Yy

T

Eigenvalues: (gq,r) with multiplicities (7, 2).



Case 3372

qg+r qu atr 0 ay r 0
A=(q), B=|"_, 0 , C = 0 » 0],D= , F'=(r).

T

Eigenvalues: (¢,r) with multiplicities (3, 6).

Case By,
gtr 0  Pa?
T
A=(q), B= (117 ) o= | 2 p=(1 % F=(g
- q ) - _% 0 ) q2$2 q U ) - 0 q ) q
00
Eigenvalues: (¢,r) with multiplicities (7, 2).
Case By
qg+r 0 _ga?
g+r qz ru ' r 0
A:(q),B: r 0 ,C: e r u ,D: 0 r ,F:(T).
: 00
Eigenvalues: (¢,r) with multiplicities (3, 6).
Cases B571, B572
0 o -2
T
3
_ g+r qu _ gzu (0 —rx o
"5 0 q+r

qa?
with an additional relation among eigenvalues ¢ and r
- in case Bs1: 7 = ngq, n? = —1. Eigenvalues: (q,7nq) with multiplicities (5, 4);
- in case Bpa: 7 = wq, w3 = —1,w # —1. Eigenvalues: (¢,wq) with multiplicities (6, 3).

Case Bg

r rs(g—r) (r—q)=

q 0 qy Y q 0
Y

s—q) rs(g—s) s
T qx

with an additional restriction on the parameters: r2s? = ¢*(r — q)(s — q).

Eigenvalues: (g, —ngz) with multiplicities (8, 1).
e Family C: Birman-Murakami-Wenzl type R-matrices

Case C' (O(3)-type R-matrix)

g1 —t)(1—1*) q(1—t)u qa?

g(1-t%) qu _
A = F = (q), B = D — < th 0 , C — qt(1+ti(1 t2) qt 0
N at 0 0

Eigenvalues: (g, —qt?, qt®) with multiplicities (5, 3, 1).

8



e Family D: R-matrices related to cyclic representations of U,gl(2) at ¢ = V1

_Case D
(g+7)(g=wr) _ 2
q+r qx ! o= Do rlg-wr) 1o r
A= (Q); B = ( r 0 >7 C = 7((1—’—7‘)(1(3_“}7‘) wr 0 3 D= TQ(LI’JQ {8 ) F= (wT .
* 2 0 0 aT 1
qxz?

Eigenvalues: (q,r, w’”—;q) with multiplicities (3, 3, 3), w® = —1,w # —1.

e Family F: Permutation type R-matrices (two eigenvalues: ¢ and —q)

Cases Fl,ly FLQ

Az@%B=<

s O
<
]
N————
Q
Il

T

0 0 gqz?
w0 o= (4 V) r-w
4 0 0

- In case F11 € = 1. Eigenvalues: (¢, —¢) with multiplicities (6, 3).
- In case F 2 ¢ = —1. Eigenvalues: (¢, —¢) with multiplicities (5, 4).

Cases Fg’l, F2’2

T

0 gqx 00 e eq O
A:(Q)aB:<q q>,C= u eq —eux? ,D=<q >,F=(EQ)-
0 q 0 eq
4 0 0
- In case Fy; € = 1. Eigenvalues: (¢, —¢) with multiplicities (7, 2).
- In case Fy 5 ¢ = —1. Eigenvalues: (¢, —¢) with multiplicities (3, 6).

Remark Let us comment on the relation of our list of R-matrices and the lists from [1, 2].

In section 5 of [1] authors classified degree conserving R-matrices for which all the components
Usg, v1, v3 and wsy of the 3 x 3 matrix C vanish. Such R-matrices are named there ‘Strict Charge
Conserving’. The correspondence between their and our lists is as follows: our case As was
considered in Lemma 5.4; cases A; 2 and A are given in Lemma 5.5; cases B1 1 and By — in
Lemma 5.8; cases A3, B3 2 and B3 ; — in Lemma 5.12.

The rest of R-matrices from the classification list are derived in [2]. Our cases By ; /5 correspond
to (32)/(33) in [2]; cases By 12 correspond to (30)/(31) in [2]; cases Bs 1 /2 correspond to (35)/(34)
in [2]; case Bg corresponds to (27a,b) in [2].

Case C corresponds to (28) in [2].

Case D corresponds to (29) in [2]. With particular choices r = —¢q, and wr = ¢ case D also
gives cases (38), and (39) in [2].

Cases F1,1 and F 2 correspond to (36) in [2] of which (37) is a particular subcase.

Note also that for the family of the Hecke type R-matrixes one can consider the limiting point
q = —r of the cases Bj «,..., By .. In this way one obtains subamilies of the cases Az, F /2 and
Fy 12 from the cases By /2, Ba 1/2 and Bs /9, respectively. By contrast, letting ¢ = —r in cases
By,1/2 one reproduces cases Fy 1,5 in their full generality. That is the reason why cases Fy /s
does not show up in the classification scheme of [2]: these cases are included in solutions (30)/(31)
there.

We got four distinct multivalued (at least four different eigenvalues) R-matrices to consider:
A1, A12, A2 and A3. We are particularly interested in them, since R-matrices with 2 or
3 different eigenvalues produce a version of already known invariants.



Connection between R-matrices and link/knot in-
variants

We define a skew-invertible R-matrix as an R-matrix, for which there exists a matrix ¥
satisfying the following condition:

Tro(R12Va3) = Pig = Tra(¥12Ro3),

where T'r; denotes a trace over the space i, and P;3 is a permutation matrix. For a skew-
invertible R-matrix, we define D = T'ro(¥13.)

Every braid corresponds to an oriented link or to a knot. To obtain a link/knot from
the given braid diagram, we should “close” all strands, i.e. connect upper and lower ends
of all strands. So using R-matrix representation of braids, we can also obtain a polynomial
link /knot invariant associated with the given R-matrix, if that R-matrix is skew-invertible,
and if it satisfies the following condition

TroDo R}y = Id;.
To do so, we have to compute the following expression for a braid with n strings:
Inv=TrTry... Tro(D1Ds...D,f(B)),

where f(B) denotes an R-matrix representation of the particular braid.
The R-matrix As is not skew-invertible, and therefore doesn’t produce link/knot invari-

ants. Case A gives trivial (numerical instead of polynomial) answers. Case A;; produces
potentially meaningful results. Case A; 2 produces the same results as Aj ;.

Detailed overview of case A

g 0 0 0 00 0 0O
0 g+r 0 gz 0 0 0 0 O
0 0 0 0 00t 0O
0O -2 0 0 00 0 0 O
R=[0 0 0 0 ¢ 0 0 00
0 0 0 0 00 0 2t 0
0 0 L 0000 00
0 0 0 0 0<%f o0 00
00 0 0 000 0 s

From TT’Q(R12\I/23) = Pjgand D = TTQ(\Ijlg) we get

|<

q
D= 0
0

V)
o= O
wl= O O

From TrngRﬁl = Idy, we get 7 = —¢3, s> = 1, that leads to

qg 0 O
D=|(0 ¢ 0 |,
0 0 =1

10



g O 000O0O0O0 O
0 g—¢> 0 g OO 0O O
0O 0 00O0O0TtXTO0 O
0 ¢ 000O0O0O0 O
R=]10 0 004000 O
0O 0 00O0O0OTO0Tt O
0O 0 ¢t 00O0O0O0 O
0O 0 0O0O0¢tO0O0 O
0 0 000O0O0O0 =+1

Here we also set x = y = z =1 for simplicity, since these parameters do not participate in
the resulting invariant.
Remarkable feature of A ;

An embedding f : R — R3? is called a long knot if there exist a,b € R such that
f(t) =(0,0,t) for any t < a or ¢t > b.

A long knot R-matrix invariant is derived similarly to a regular R-matrix invariant, with
the exception that we do not take the trace over the first space,

Invl=Try...Trp(Dy...D,f(B)).

For previously considered R-matrices Invl was a scalar matrix [3], ¢ x Id, where ¢ is the
long knot invariant. However, in our case, we get a diagonal, but not a scalar matrix,

d 0 0
X = 0 do O
0 0 ds

Presumably, d; = da, but so far it is an observation (checked for all prime knots with up
to 9 crossings), not a proven fact. Under this assumption, we can rewrite our invariant as

1 1
I =qd + adl + sds = (¢ + a)dl + sds, (82 =1).
Now, we can focus on d; and ds. Let’s split them into two components, d; = (A) + (B),
d3 = (C) + (D). Here, A, C are parts of the trace with 4, j # 3 for all matrix components
a;;. Parts of the trace with i = 3 or j = 3 form B and D.
Invariant calculation examples
1) Knot 75, braid notation {1,1,1,2,-1,2}:
di = (¢* — q" +24° = 2¢° +2¢'0 — ¢'2 + ¢"4 — ¢'6) + (0),

dz = (0) + (1).

2) Link L7a7{0,0}, braid notation {-1, 2, 2, -1, -3, 2, -3}:

1 1 4 3 s¢®  sq s 5
di=(5-¢"——=+3¢"+— -3 - S+ + (0 +—+1+—+°),
1 (qs CmgTot T gt T ) (t4 A P q)

1 1 1 sq s s
dy=(%+—5+—5+D)+ (5 +—5+1+sqg+°).
(qﬁ ¢ )+ G gt q)

11



Further analysis

The first component of di, A, represents Jones invariant, so we get rid of it to focus
on the new parts:

. 1
I=1-(qg+ A= Ii(g,t) + I2(q, ).

Key observations:
e For knots, I; =0, Is = 1, so our invariant does not provide any new information.
e For links, I1, I are usually (but not always) non-trivial polynomials.

e Our invariant can differentiate some of the links that are not distinguishable by Jones,
HOMFLY, and Kauffman Polynomials, e.g. L10a38{1} and L10a108{1}.

e Our invariant can differentiate some of the links that are not distinguishable by
Multivariable Alexander Polynomial, e.g. L10a136{0,1} and L10a136{1,0}.

It follows from the last two points that our invariant is different from all the main poly-
nomial link invariants, mentioned above.

References
[1] Paul Martin and Eric C. Rowell. Classification of spin-chain braid representations.
arXiv: 2112.04533, 2021.

[2] Jarmo Hietarinta, Paul Martin, Eric C. Rowell. Solutions to the constant Yang-Baxter
equation: additive charge conservation in three dimensions. arXiv: 2310.03816, 2023.

[3] A. P. Isaev, Quantum Groups And Yang-Baxter Equations, preprint MPIM (Bonn),
MPI 2004-132, page 32, proposition 4.

12



