Теория вероятностей 2024. Задачи 5. Распределения случайных величин и их преобразования.

- 1. Пусть $\alpha \sim Uniform[0,1]$. Найдите следующие функции:
 - (a) Функцию плотности $p_{\beta}(x)$, если случайная величина β такова, что $\beta = 3\alpha 1$
 - (b) Функцию плотности $p_{\gamma}(x)$, если случайная величина γ такова, что $\gamma = -\ln(\alpha)$
 - (c) Функцию плотности $p_{\kappa}(x)$, если случайная величина κ такова, что

$$\kappa = \begin{cases} 1 + \alpha + \alpha^2 + \dots & \alpha \in (0, 1) \\ 0 & \alpha \notin (0, 1) \end{cases}$$

(d) Функцию плотности $p_{\epsilon}(x)$, если

$$\epsilon = \begin{cases} \sum_{j=0}^{\infty} (-1)^j \alpha^j & \alpha \in (0,1) \\ 0 & \alpha \notin (0,1) \end{cases}$$

(e) Функцию распределения $F_{\rho}(x)$, если случайная величина ρ такова, что

$$\rho = \begin{cases} 1 & \alpha & \text{иррациональное} \\ 0 & \alpha & \text{рациональноe} \end{cases}$$

- 2. Случайная величина α равномерна на отрезке [-1,3], найти плотность для $-|\alpha|$
- 3. Случайная величина α равномерна на отрезке [-1,3], найти функцию распределения для $\frac{|\alpha|}{\alpha}$
- 4. Случайная величина α равномерна на отрезке [-1,1], независимая с α случайная величина β бернуллиевская с параметром $p=\frac{1}{3}$.
 - (a) Найти функцию распределения случайной величины $\alpha\beta$
 - (b) Найти функцию распределения случайной величины $|\alpha|\beta$
 - (c) Найти функцию распределения случайной величины $|2\alpha-1|\beta$
- 5. Случайная величина α равномерна на отрезке [0,1], случайная величина β независима с α .
 - (a) Найти функцию плотности распределения случайной величины $2\alpha \beta$, если β распределена по показательному закону с параметром 1.
 - (b) Найти функцию распределения случайной величины $\alpha+\beta$, если β дискретна и распределена по пуассоновскому закону.
 - (c) Найти функцию распределения случайной величины $\alpha+2\beta,$ если β геометрическая случайная величина.
- 6. Случайная величина γ распределена по показательному закону с параметром a, случайная величина θ также распределена по показательному закону с параметром b, при этом γ , θ независимы.
 - (a) Найти функцию плотности с.в $\sqrt{\gamma}$
 - (b) Найти функцию плотности с.в γ^2
 - (c) Найти функцию плотности с.в $1 e^{-a\gamma}$
 - (d) Найти функцию плотности с.в $\max(\gamma,\theta)$

- (e) Найти функцию плотности с.в $\min(\gamma, \theta)$
- (f) Найти функцию плотности с.в $\gamma + \theta$
- 7. * Пусть $X_1, X_2 \ldots$ независимые случайные величины, с одинаковым распределением $\exp(\lambda)$. Пусть $Y_n := \sum_{i=1}^n X_i$ и $N_t := \inf\{n \geq 0 : Y_{n+1} > t\}, \ t > 0$.
 - (a) Докажите что распределение Y имеет плотность $\rho_n(y) := e^{-\lambda y} \frac{\lambda^n y^{n-1}}{(n-1)!} \mathbb{I} y \geq 0.$
 - (b) Докажите что $\mathbb{P}(N_t = k) = e^{-\lambda t} (\lambda t)^k / k!$ (это означает, что $N_t \sim \text{Poisson}(\lambda t)$).
- 8. Точка (x,y) выбирается из квадрата $[0,1] \times [0,1]$ согласно равномерному распределению. Найдите распределение случайной величины $x^2; x/(x+y); x^2+y^2, \min(x,y), \max(x,y)$.
- 9. Пусть случайный вектор (α, β) равномерно распределен в области $\mathcal{G} = \{|x| + |y| < 1\}$. То есть соответствующая двумерная плотность распределения

$$f_{(\alpha,\beta)}(x,y) = \begin{cases} \text{const} & x,y \in \mathcal{G} \\ 0 & x,y \notin \mathcal{G} \end{cases}$$

- (а) Чему равна константа в формуле?
- (b) Найти плотности $f_{\alpha}(x)$, $f_{\beta}(y)$ распределения первой α и второй β координат вектора.
- (c) Зависимы ли α и β ?
- (d) Найти плотности распределения для $\alpha + \beta$ и для $\alpha \beta$.
- 10. Пусть случайный вектор (α, β) равномерно распределен в верхнем полукруге $\mathcal{G} = \{x^2 + y^2 < 1 \mid y > 0\}$. То есть соответствующая двумерная плотность распределения

$$f_{(\alpha,\beta)}(x,y) = \begin{cases} \text{const} & x,y \in \mathcal{G} \\ 0 & x,y \notin \mathcal{G} \end{cases}$$

- (а) Чему равна константа в формуле?
- (b) Найти плотность $f_{\alpha}(x)$ первой α координаты вектора.
- (c) Найти плотность распределения для $\rho = \sqrt{\alpha^2 + \beta^2}$. Нарисовать график $f_{\rho}(t)$.
- (d) Найти плотность распределения для $\phi = \arccos(\alpha/\sqrt{\alpha^2 + \beta^2})$. Нарисовать график $f_{\phi}(t)$.
- (e) Зависимы ли ρ и ϕ ?
- (f) Найти плотность распределения для $\xi = \alpha/\beta$. Нарисовать график $f_{\xi}(t)$.
- (g) Найти плотность распределения для $\eta = \alpha^2/\beta^2$. Нарисовать график $f_n(t)$.
- (h) Найти плотность распределения для $\theta = \alpha^2 + \beta^2$. Нарисовать график $f_{\theta}(t)$.