- **Задача 1.** Рассмотрим пучок коник $\mathcal{P} = \langle \mathcal{C}_1, \mathcal{C}_2 \rangle$, порождаемый кониками $\mathcal{C}_1, \mathcal{C}_2$ такими, что базисное множество $B(\mathcal{P}) = \mathcal{C}_1 \cap \mathcal{C}_2$ пучка \mathcal{P} состоит из конечного числа точек (как мы знаем, не более четырех).
- 1) Докажите, что коники пучка \mathcal{P} высекают на произвольной прямой l, не пересекающей базисное множество $B(\mathcal{P})$ пучка, пары точек одной инволюциии.
- 2) Докажите, что, обратно, все пары точек произвольной инволюции на прямой l высекаются кониками некоторого пучка.
- Задача 2. Рассмотрим треугольник ABC, вписанный в невырожденную конику C, и пусть D коника, вписанная в треугольник ABC. Через произвольную точку A_1 на конике C проведем две касательные к конике \mathcal{D} , и пусть они пересекают \mathcal{C} в точках B_1 и C_1 соответственно. Докажите, что прямая B_1C_1 касается коники \mathcal{D} .

Указание: Пусть $P = A_1B_1 \cap BC$, $P_1 = AB \cap B_1C_1$, $Q = A_1C_1 \cap BC$, $Q_1 = AC \cap B_1C_1$. Проверьте, что соответствие $f: BC \to B_1C_1$ такое, что $f(B) = P_1$, $f(P) = B_1$, $f(C) = Q_1$, $f(Q) = C_1$, является проективным.

Вещественную евклидову плоскость ${\bf R}^2$ с координатами (x,y) дополним бесконечно удаленной прямой \mathbb{P}^1_∞ с уравнением $x_0=0$ до вещественной проективной плоскости \mathbb{P}^2 с однородными координатами $(x_0:x_1:x_2)$, где $x=x_1/x_0,\;y=x_2/x_0.$ На прямой \mathbb{P}^1_∞ рассмотрим пару точек I=(0:1:i) и I = (0:1:-i), где $i = \sqrt{-1}$. Пара точек $\{I, J\}$ называется абсолютом или циклическими точками.

- **Задача 3.** 1) Проверьте, что вещественная коника \mathcal{C} в \mathbf{R}^2 является окружностью тогда и только
- тогда, когда она пересекает прямую \mathbb{P}^1_∞ в абсолюте $\{I,\ J\}$. 2) Докажите, что прямые l_1 и l_2 в \mathbf{R}^2 перпендикулярны друг другу тогда и только тогда, когда их продолжения в \mathbb{P}^2 пересекают \mathbb{P}^1_∞ в точках L_1 и L_2 , гармонически делящих абсолют $\{I,\ J\}$.
- Задача 4. Пользуясь утверждением 2 предыдущей задачи, докажите средствами проективной геометрии в плоскости $\mathbb{P}^2 = \mathbf{R}^2 \cup \mathbb{P}^1_{\infty}$, что три высоты в треугольнике пересекаются в одной точке. (Указание: Рассмотрите пучок коник, проходящих через вершины треугольника и точку пересечения двух его высот.)
- Задача 5. * (не обязательная) Найдите устное доказательство следующего факта: поляры фиксированной точки относительно коник произвольного пучка пересекаются в одной точке.