Всюду $\mathbf{k} = \overline{\mathbf{k}}$, $\operatorname{char} \mathbf{k} \neq 2$.

Задача 1. В проективном пространстве $\mathbb{P}^n = \mathbb{P}(V)$ дана квадрика Q с уравнением F(x) = 0, где $F(x) = \sum_{i,j=0}^n c_{ij}x_ix_j$ - квадратичная форма. Для произвольной точки $a = (a_0 : ... : a_n) \in \mathbb{P}^n$ мы определили поляру P_aQ точки a относительно квадрики Q как подпространство в \mathbb{P}^n , заданное (линейным по x) уравнением B(a,x) = 0, где билинейная симметрическая форма B(x,y) есть поляризация квадратичной формы F, то есть $B(x,y) = \frac{1}{2}(F(x+y) - F(x) - F(y))$. Докажите, что уравнение поляры P_aQ можно записать в следующем равносильном виде:

$$\sum_{i=0}^{n} a_i \frac{\partial F}{\partial x_i} = 0. \tag{1}$$

Задача 2. В обозначениях предыдущей задачи пусть точка a не лежит на квадрике Q, пусть l – произвольная прямая через точку a и пусть $b = l \cap P_aQ$ – точка пересечения l с полярой точки a относительно Q.

- 1) Пусть прямая l пересекает квадрику Q в двух различных точках c и d. Докажите, (a,b,c,d) гармоническая четверка точек.
- 2) В условиях предыдущего пункта пусть c=d, то есть l касательная к Q прямая в точке c. Докажите, что в этом случае b=c. Как следствие, получаем отсюда, что $P_aQ\cap Q$ есть множество точек касания с Q касательных к Q прямых, проходящих через точку a.

Пусть B(u,v) — симметрическая билинейная форма, заданная на векторном пространстве V, $\varphi_B:V\to V^*$ — линейное отображение, сопоставляющее вектору $u\in V$ линейную форму на V (т.е. элемент из V^*), значение которой на векторе $v\in V$ равно B(u,v) (т.е. $\varphi_B(u)(v)=B(u,v)$). Мы видели, что и, наоборот, линейное отображение $\varphi:V\to V^*$ определяет билинейную форму B_φ на V (задаваемую формулой $B_\varphi=\varphi(u)(v)$), причем симметричность формы B_φ равносильна тому, что двойственное отображение $\varphi^*:V^{**}\to V^*$ совпадает с φ при каноническом отождествлении V с V^{**} . При этом имеем равносильное предыдущему определение квадрики в $\mathbb{P}(V)$: $\kappa eadpuko Q$ в $\mathbb{P}^n=\mathbb{P}(V)$ называется множество нулей квадратичной формы F(x)=B(x,x). Ядром формы F (или, ядром $\kappa eadpuku Q$) называется подпространство $K=\ker(\varphi_B)\subset V$. Квадрика (и формы E0 называется E1 называется невырожеденной, если у нее нулевое ядро.

Задача 3. 1) В предыдущих обозначениях докажите, что если $W \subset V$ – такое подпространство, что $V = W \oplus K$, то ограничение формы F на W невырождено.

- 2) В условиях предыдущего пункта обозначим через \widetilde{Q} невырожденную квадрику в $\mathbb{P}(W)$, задаваемую ограничением формы q на W. Покажите, что квадрика Q есть объединение всех прямых, соединяющих точки \widetilde{Q} с точками из $\mathbb{P}(K)$. (Здесь $\mathbb{P}(W)$ и $\mathbb{P}(K)$ это проективные подпространства в $\mathbb{P}^n = \mathbb{P}(V)$.)
- 3) В условиях предыдущего пункта покажите, что особые точки квадрики Q это в точности точки $\mathbb{P}(K)$, т.е. $\mathrm{Sing}Q=\mathbb{P}(K)$.

Задача 4. Рассмотрим *поляритет относительно квадрики* Q как проективное отображение $p: \mathbb{P}^3 \xrightarrow{\sim} (\mathbb{P}^3)^\vee, \ a \mapsto P_a Q$, и построим отображение в себя множества прямых в \mathbb{P}^3 , сопоставляющее прямой l прямую $p_l Q$, называемую *полярой прямой* l *относительно квадрики* Q, где $P_l Q := \bigcap_{r \in I} P_a Q$.

Пользуясь двумя сериями образующих прямых на квадрике Q, найдите геометрическую конструкцию прямой P_lQ в следующих возможных случаях:

- 1) $l \cap Q = \{x, y\} =$ две различные точки;
- 2) $l \cap Q$ единственная точка;
- 3) l лежит на Q.