Семинар 22

Движения. Выпуклость (в меру)

- X аффинное пространство $\mathrm{Aff}(V), M \subset X$ подмножество X, M^0 множество его внутренних точек, $\mathrm{Aff}M$ его аффинная оболочка, $\mathrm{Conv}M$ его выпуклая оболочка. Назовем M фигурой, если $\mathrm{Aff}M=X$. Нужно доказать нижеследующие утверждения.
- 1. Несобственное движение евклидовой плоскости это либо отражение, либо отражение с последующим параллельным переносом вдоль его зеркала.
- 2. Группы движений двумерного и трехмерного евклидова пространства порождены отражениями.
 - 3. Любая конечная группа аффинных преобразований имеет неподвижную точку.
- 4. Пусть M замкнутое подмножество евклидова пространства и $x \notin M$. Тогда в M существует ближайшая к x точка.
- 5. Если аффинная (выпуклая) оболочка любых двух точек из M лежит в M, то этим же свойством обладает аффинная (выпуклая) оболочка любого конечного числа точек из M.
 - 6. Замыкание выпуклого множества выпукло.
 - 7. Пусть M выпуклая фигура. Тогда M^0 выпукло, а его замыкание содержит M.
- 8. Образ и полный прообраз выпуклого множества при аффинном отображении является выпуклым множеством.
 - 9. Теорема отделимости верна для плоских выпуклых фигур.
- 10. Через любую точку x замкнутой фигуры M, не лежащую в M^0 , можно провести такую гиперплоскость π , что $x \in \pi$, и фигура M лежит по одну сторону от π (теорема об опорной гиперплоскости).
- 11^* . Каждая точка $x \in \mathrm{Conv}(M)$ n-мерной фигуры M является выпуклой комбинацией (n+1) точек из M (зависящих, вообще говоря, от точки x и необязательно различных)(Каратеодори).

Более слабое утверждение, не ограничивающее числа точек в выпуклой комбинации, было на лекции.