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1 Linearization of germs of conformal maps at fixed
point

Consider a germ of conformal map f : (C, 0)→ (C, 0) at fixed point 0:

f(z) = λz +O(z2), λ ∈ C \ {0}. (1.1)

Question 1.1 Does there exist a germ of conformal map h : (C, 0)→ (C, 0)
that conjugates f to its linear part, i.e., for which h ◦ f ◦ h−1(z) = λz? Or
equivalently,

h ◦ f(z) = λh(z). (1.2)

If such h exists, then the germ f is called linearizable.

First we give a proof of positive answer in the case, when |λ| 6= 0, which
is done by showing that the conjugating map h can be found as a fixed point
of a contracting map of an appropriate metric space.

The case, when |λ| = 1, i.e., λ = e2πiθ, θ ∈ R, is much more difficult. It is
easy to show that for every fixed rational θ ∈ Q a typical f with multiplier
λ is not linearizable. Sufficient conditions on θ guaranteeing linearizabil-
ity of every f with given multiplier λ = e2πiθ were obtained by K.Siegel
and A.Bruno. Siegel Theorem states that f is linearizable whenever θ is
a Diophantine number. Bruno Theorem is the same in more general case:
under a weaker Bruno Diophantine condition. A Theorem of J.-C.Yoccoz
(Fields medal, 1994) states that Bruno’s condition is sharp: for every θ ∈ R
that does not satisfy Bruno’s Diophantine condition there exists an f with
multiplier λ = e2πiθ that is not linearizable.

Below we state and prove Siegel Theorem and state Bruno’s and Yoccoz’s
results without proofs.
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1.1 Hyperbolic case: |λ| 6= 1.

Theorem 1.2 Every germ of conformal mapping (1.1) with |λ| 6= 1 is con-
formally conjugated to its linear part. More precisely, there exists a unique
conformal germ h : (C, 0)→ (C, 0), h(0) = 0, h′(0) = 1, satisfying (1.2).

Proof Without loss of generality we consider that 0 < |λ| < 1 (replacing f
by f−1, if this is not the case). Equation (1.2) is equivalent to the statement
that h is a fixed point of the transformation

L : h 7→ λ−1h ◦ f.

We will show that L is a contraction in appropriate complete metric space
and hence, has a unique fixed point there.

Fix a µ > 0 such that

0 < µ2 < |λ| < µ < 1. (1.3)

Fix an r > 0 such that f is holomorphic on Dr and

|f(z)| ≤ µ|z| whenever z ∈ Dr. (1.4)

In particular, (1.4) implies that f(Dr) ⊂ Dr.
For every function q(z) holomorphic on Dr and continuous on Dr such

that q(0) = q′(0) = 0 set

||q|| := sup
|z|≤r

|q(z)|
|z|2

.

Let M denote the space of functions h holomorphic on Dr and continuous
on Dr such that

h(0) = 0, h′(0) = 1,

equipped with the distance dist(h1, h2) = ||h1−h2||. This is a complete met-
ric space. Indeed, a sequence fundamental in the norm converges uniformly,
by definition. Hence, its limit is holomorphic, by Weierstrass Theorem, and
vanishes at 0. The derivatives also converge uniformly in compact set to the
derivative of the limit, by Cauchy integral formula for the derivative and
convergence of the function. Therefore, the limit has unit derivative at 0.
Finally, the limit of a converging sequence is an element of the space M ,
and hence, M is complete.

Proposition 1.3 L(M) ⊂M .
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Proof If h(0) = 0, then (Lh)(0) = 0 and (Lh)′(0) = h′(0). If h is holomor-
phic on Dr and continuous on Dr, then so is the composition h ◦ f , since f
is holomorphic on Dr and f(Dr) ⊂ Dr. This implies that L preserves the
space M and proves the proposition. 2

Proposition 1.4 ||Lh1 − Lh2|| ≤ ν||h1 − h2||, ν = |λ|−1µ2 < 1.

Proof The operator L being linear, it suffices to show that ||Lq|| ≤ ν||q||
for every q as above. One has

|(Lq)(z)|
|z2|

= |λ|−1 |q(f(z))|
|f(z)|2

|f(z)|2

|z|2
≤ |λ|−1||q||µ2,

by definition, (1.4) and since f(z) ∈ Dr whenever z ∈ Dr. This implies
that the norm of the image Lq is no greater than ν||q||. The proposition is
proved. 2

The two latter propositions together imply that L : M →M is a contrac-
tion. Hence, L has a unique fixed point h ∈M , which obviously represents a
conjugating germ we are looking for. Its uniqueness follows from the above
uniqueness of fixed point and the fact that the above argument holds for
every r small enough. This proves Theorem 1.2. 2

1.2 Siegel Theorem

Definition 1.5 A number θ ∈ R is Diophantine, if there exist C, γ > 0 such
that for every rational number m

n , (m,n) = 1, one has

|θ − m

n
| > C

|n|γ
; (1.5)

in this case it is called (C, γ)-Diophantine. A number is γ-Diophantine, if it
is (C, γ)-Diophantine for some C.

Exercise 1.6 Prove that for γ > 2 the complement of the set of γ-Diophantine
numbers has Lebesgue measure zero, i.e., for γ > 2 typical numbers are γ-
Diophantine.

Theorem 1.7 (Siegel). For every Diophantine number θ every conformal
germ f with multiplier e2πiθ is linearizable.

The proof of Theorem 1.7 is based on an infinite-dimensional version of
Newton method of finding root of a functional equation.
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1.3 The Newton method with estimates

This is the method of finding root of a strictly monotonous function f(x)
on a segment I0 := [x0 − r0, x0 + r0] by Newton approximations, see Fig. 1:

x1 := x0 −
f(x0)

f ′(x0)
, xj+1 := xj −

f(xj)

f ′(xj)
, j = 1, 2, . . . . (1.6)

The next lemma not only provides sufficient conditions for convergence,
but also gives useful estimates on the step of Newton method.

Lemma 1.8 Every universal constant c ≥ 3 satisfies the following state-
ments. Let r0 > 0, η0 ∈ (0, 1

4 ], δ0 ∈ (0, η4c
0 ). Let f(x) be a C2-smooth

function on I0 := [x0 − r0, x0 + r0] satisfying the following inequalities:

|f(x0)| ≤ δ0r0, (1.7)

and for every x ∈ [x0 − r0, x0 + r0] one has

|f ′(x)| ≥ η0, |f ′′(x)| ≤ 1

η0r0
. (1.8)

Set
η1 =

η0

2
, r1 = r0(1− η0), δ1 = δ2

0η
−c
0 . (1.9)

Then the above x1 given by (1.6) satisfies the following inequalities:

|x1 − x0| ≤ η0r0, (1.10)

|f(x1)| ≤ δ1r1, (1.11)
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I1 = [x1 − r1, x1 + r1] ⊂ I0, (1.12)

|f ′(x)| ≥ η1, |f ′′(x)| ≤ 1

η1r1
. (1.13)

Moreover,

δ1 < η4c
1 , δ1 < δ

7
4
0 . (1.14)

Proof One has

|x1 − x0| =
|f(x0)|
|f ′(x0)|

≤ δ0r0

η0
≤ ηc−1

0 r0 ≤ η0r0,

f(x1) = f(x0) + f ′(x0)(x1 − x0) +R,

|R| ≤ 1

2
max
[x0,x1]

|f ′′(x)|(x1 − x0)2 ≤ 1

2η0r0
(x1 − x0)2,

f(x0) + f ′(x0)(x1 − x0) = 0,

by Taylor series remainder estimate and definition. Therefore,

|f(x1)| = |R| ≤ 1

2η0r0
(x1 − x0)2 =

(f(x0))2

2η0r0(f ′(x0))2

≤ 1

2
δ2

0η
−3
0 r0 ≤ δ2

0η
−3
0 r1 ≤ δ2

0η
−c
0 r1,

for every c ≥ 3. One has

δ1 = δ2
0η
−c
0 ≤ η

7c
0 < η4c

1 .

This proves (1.10), (1.11) and the first inequality in (1.14). Inclusion (1.12)
is implied by the immediate inequality x1 + r1 < x0 + r1 < x0 + r0 and by
the inequality

x1 − r1 ≥ x0 − η0r0 − r1 = x0 − (η0 + (1− η0))r0 = x0 − r0.

Inequalities (1.13) follows from (1.8) and the inclusion I1 ⊂ I0. The second
inequality in (1.14) follows from definition and the inequality δ0 < η4c

0 . 2
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1.4 Background material: Cauchy bounds in one variable

In the proof of Siegel Theorem and analytic KAM theorem we use Cauchy
bounds on holomorphic functions given by the next well-known theorem.

Theorem 1.9 (Cauchy bounds). Let U ⊂ C be a domain, z0 ∈ U and
r > 0 be such that the disk

Dr(z0) := {|z − z0| < r}

is contained in U . For every bounded holomorphic function f : U → C with
Taylor series

f(z) =
+∞∑
k=0

ak(z − z0)k

for every k ∈ Z≥0 one has

|ak| ≤
supU |f |
rk

. (1.15)

Proof The Taylor series converges uniformly on every smaller disk Dρ(z0),
ρ < r. Then each Taylor coefficient ak can be found by well-known Cauchy
integral formula

ak =
1

2πi

∮
|ζ−z0|=ρ

f(ζ)

(ζ − z0)k+1
dζ (1.16)

(residue formula for integral: ak is the residue at z0 of the form (z −
z0)−(k+1)f(z)dz). The module of the right-hand side in (1.16) is bounded

from above by supU |f |
ρk

. This proves (1.15) with r replaced by arbitrary

ρ ∈ (0, r), and hence, implies (1.15). 2

1.5 Proof of Siegel Theorem

Recall that we suppose that

λ = e2πiθ, |θ − m

n
| > c0

|n|γ
for every

m

n
∈ Q, (m,n) = 1. (1.17)

Let f0(z) be a germ of conformal map at the origin, f0(0) = 0, f ′0(0) = λ:

f0(z) = λz + f̂0(z), f̂0(z) =
∞∑
j=2

ajz
j . (1.18)
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Applying conjugacy with rescaling, i.e., replacing f(z) by

gµ(z) = µ−1f(µz) = λz + µ−1f̂0(µz) = λz +
+∞∑
j=2

µj−1ajz
j , µ ∈ (0, 1),

one can make the nonlinear part well-defined on an arbitrarily given disk
Dr (µ should be small depending on r) and arbitrarily small on Dr. This
follows from the asymptotics and inequality

f̂0(z) = O(z2), |f̂0(µz)| ≤ νµ2 for every µ ∈ (0, 1).

Here ν is a constant depending only on the germ f .
Let us choose some r0 > 0, η0 ∈ (0, 1

4) and δ0 ∈ (0, 1) (which eventually
will be very small) and normalize f0 by rescaling so that f0 be holomorphic
on Dr0 , continuous on Dr0 and satisfying the upper bound

|f̂0(z)| = |f0(z)− λz| ≤ δ0r0 for every z ∈ Dr0 . (1.19)

Finding ψ that conjugates f0 to its linear part is equivalent to solving
the following functional equation in infinite-dimensional space:

G(ψ) := f0 ◦ ψ(z)− ψ(λz) = 0. (1.20)

To solve it, we apply a multidimensional version of the Newton method,
starting with ψ0 = Id, constructing next Newton approximation ψ1 of ψ
etc. To prove its convergence, we prove the following estimates on Newton
method step, analogous to those of Lemma 1.8 but more tricky.

Lemma 1.10 There exists a universal constant c = c(c0, γ) ≥ 3 satisfying
the following statements. Let λ = e2πiθ be the same, as in (1.17). Take
arbitrary numbers

r0 > 0, η0 ∈ (0,
1

4
), δ0 ∈ (0, η4c

0 ).

Let f0(z) be the same, as in (1.18), holomorphic on Dr0, continuous on Dr0

and satisfying inequality (1.19). Set

r1 = (1− η0)r0, δ1 = δ2
0η
−c
0 , η1 =

η0

2
.

Then there exists an injective map ψ1 : Dr1 → Dr0 holomorphic on Dr1 and
continuous on Dr1, such that the conjugated map

f1(z) := ψ−1
1 ◦ f0 ◦ ψ1(z) (1.21)
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is holomorphic on Dr1, continuous on Dr1 and satisfies the estimate

|f̂1(z)| = |f1(z)− λz| ≤ δ1r1 for every z ∈ Dr1 , (1.22)

and the map ψ1 satisfies the estimate

|ψ1(z)− z| ≤ δ0η
−c
0 for every z ∈ Dr1 . (1.23)

Moreover, one has

δ1 < η4c
1 , δ1 < δ

7
4
0 . (1.24)

Proof of Siegel Theorem modulo Lemma 1.10. Define by induction

rk+1 = (1− ηk)rk, δk+1 = δ2
kη
−c
k , ηk+1 =

ηk
2
.

The sequence ηk being a decreasing geometric progression, the sequence rk
is decreasing and converges to some limit r > 0. The sequence δk decreases
to zero superexponentially, by (1.24). Let ψk be the maps constructed suc-
cessively by applying Lemma 1.10: ψ2 satisfies (1.23) with δ0, η0 replaced
by δ1, η1 etc. By construction

|ψk(z)− z| ≤ δk−1η
−c
k−1 on Drk c Dr.

The sequence of the latter right-hand sides tends to zero superexponentially,
by (1.24) and since ηk is a geometric progression. Therefore, the function
sequence ψk(z) converges uniformly and superexponentially to z on Dr. Set
now

ψ(z) := lim
k→+∞

Hk(z), Hk(z) := ψ0 ◦ ψ1 ◦ . . . ψk(z).

For every k the above composition Hk is a well-defined map Dr → Dr0 ,
since ψk sends Drk to Drk−1

.
Claim 1. The sequence Hk converges uniformly with derivatives on D r

2

to a map ψ(z) holomorphic on D r
2

and continuous on D r
2
.

Proof Indeed, the derivatives H ′k are uniformly bounded on the latter disk,
since |Hk(z)| ≤ r0 and by the Cauchy bound (1.15):

|H ′k(z)| ≤
max|ζ|≤r |Hk(ζ)|

r − |z|
≤ 2r0

r
whenever |z| ≤ r

2
.

Therefore, for every z ∈ D r
2

one has

|Hk+1(z)−Hk(z)| ≤
2r0

r
max
|z|≤ r

2

|ψk+1(z)− z| ≤ 2r0

r
δkη
−c
k .
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The latter right-hand side tends to zero, as k → ∞. This proves Claim 1.
2

Clearly ψ conjugates f0 to the limit limk→∞ fk on D r
2
. The latter limit

clearly coincides with λz: the map Hk conjugates f0 with fk, and |fk(z) −
λz| ≤ δk−1rk−1 → 0 on Dr. Thus, ψ is the conjugacy from Siegel Theorem
we are looking for. This proves Siegel Theorem modulo Lemma 1.10. 2

Proof of Lemma 1.10. Proof of (1.24) repeats the proof of (1.14).
Without loss of generality we can and will consider that r0 = 1, applying

rescaling by µ = r0: the rescaling does not change the bound (1.19), which
now becomes

|f̂0(z)| ≤ δ0, f̂0(z) := f0(z)− λz =

∞∑
j=2

ajz
j . (1.25)

Write

ψ1(z) = z + ψ̂1(z), ψ̂1(z) =
∞∑
j=2

bjz
j .

Our goal is to find a conjugacy ψ, i.e., a map satisfying f0 ◦ ψ(z) = ψ(λz).
Applying a Newton method step presented below will yield the first Newton
approximation ψ1 of ψ so that the difference f0 ◦ ψ1(z) − ψ1(λz) admits a
good upper bound. The terms of the latter difference are given by

f0◦ψ1(z) = λ(z+ψ̂1(z))+f̂0(z)+R(z), R(z) = f̂0(z+ψ̂1(z))−f̂0(z), (1.26)

ψ1(λz) = λz + ψ̂1(λz). (1.27)

Equating (1.26) and (2.5) yields

Λψ̂1(z) = f̂0(z) +R(z), Λψ̂1(z) := ψ̂1(λz)− λψ̂1(z). (1.28)

Definition 1.11 The homological equation is the following equation on ψ̂1(z):

Λψ̂1(z) = f̂0(z). (1.29)

In what follows we prove the statements of the lemma for the map ψ1(z) =
z + ψ̂1(z), where ψ̂1 is a solution of the homological equation.

Proposition 1.12 The homological equation has a unique formal solution,
i.e., a unique solution of type of a formal Taylor series; it is given by

ψ̂1(z) =

∞∑
j=2

bjz
j , bj =

aj
λ(λj−1 − 1)

. (1.30)

10



The latter series converges uniformly on Dν , ν = 1− η0
4 , and satisfies (1.23)

on the latter disk with appropriate universal constant c = c(c0, γ).

Proof Uniqueness and formula (1.30) are obvious. Let us prove conver-
gence and (1.23). One has |λ| = 1, |λj−1 − 1| = |e2πi(j−1)θ − 1|. The latter
right-hand side is the length of the chord connecting 1 to the point on the
unit circle with argument 2πi(j − 1)θ(mod2πZ). The chord length is bigger
than half of the smallest circular arc length for an arc connecting the same
points. The smallest arc length is clearly equal to 2π times the minimal
distance of the number (j − 1)θ to a point of the integer lattice. Thus, it is
greater than 2π c0

|j−1|γ−1 ≥ 2πc0
jγ . Finally,

|bj | =
|aj |

λ(λj−1 − 1)
≤ (πc0)−1jγ |aj |. (1.31)

Set

ν = 1− η0

4
, u := − ln ν ∈ (0,

1

4
); ν = e−u.

On the other hand, |aj | ≤ maxD1
|f̂0| ≤ δ0, by Cauchy bound (1.15) and

(1.25). Therefore, the following inequality holds on Dν :

∞∑
j=2

|bjzj | ≤ (πc0)−1δ0

∞∑
j=2

jγνj = (πc0)−1δ0

∞∑
j=2

jγe−ju. (1.32)

Proposition 1.13 (The main power series inequality). For every γ >
0 there exists a constant c2 = c2(γ) > 0 such that for u ∈ (0, 1

4) one has

∞∑
j=2

jγe−ju ≤ c2

uγ+1
. (1.33)

Proof Multiplying the above series by uγ+1 transforms it to an integral
sum with step u for the integral

∫ +∞
0 vγe−v. The latter integral sum is

uniformly bounded in u varying on any finite segment in R≥0. Denoting by
c2 its uniform upper bound on the segment u ∈ [0, 1

4 ] we get (1.33). 2

Let us now prove inequality (1.23) on Dν c Dr1 . Substituting (1.33) to
the right-hand side in (1.32) yields that for every z ∈ Dν

|ψ̂1(z)| ≤
∞∑
j=2

|bjzj | ≤ (πc0)−1c2δ0u
−(γ+1).
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Taking into account that u = − ln(1− η0
4 ) is no less than η0 times a universal

constant, we get that the latter right-hand side is less than δ0η
−c
0 with some

universal constant c > 0, which we can and will take no less than 3. This
implies convergence of the series ψ̂1(z) and the bound (1.23) for the function
ψ̂1(z) on the disk Dν . 2

Proposition 1.14 The function f1(z) = ψ−1
1 ◦f0 ◦ψ1(z) is holomorphic on

Dr1 and satisfies bound (1.22).

Proof Let us introduce the following four radii:

r1 < ν1 < ν2 < ν3 < ν4, r1 = 1− η0,

ν1 = 1− 3η0

4
, ν2 = 1− η0

2
, ν3 = 1− 3η0

8
, ν4 = ν = 1− η0

4
.

Claim 2. The inverse ψ−1
1 is holomorphic on Dν2 and sends it to Dν3.

Proof Let us prove injectivity of the map ψ1 on Dν3 . Indeed, ψ1 is holo-
morphic on Dν4 and satisfies upper bound (1.23) there, as was proved above.
On the disk Dν3 the derivative ψ̂′1 = ψ′1 − 1 has modulus no greater than

the maximum modulus of a value |ψ̂1(z)|, z ∈ Dν4 , divided by ν4− ν3 = η0
8 ,

by Cauchy bound (1.15). That is, for every z ∈ Dν3 , one has

|ψ′1(z)− 1| ≤ δ0η
−c
0 8η−1

0 < 8η3c−1
0 <

1

4
. (1.34)

For every z, w ∈ Dν3 one has

ψ1(z)− ψ1(w) =

∫
[z,w]

ψ′1(ζ)dζ = (z − w) +

∫
[z,w]

(ψ′(ζ)− 1)dζ,

The right-hand side is non-zero, since the latter integral has module less
than 1

4 |z − w|, by (1.34). Injectivity on Dν3 is proved.
The minimal distance between the ψ1-image of a point of the boundary

∂Dν3 and the same boundary ∂Dν3 is no greater than maxDν3
|ψ̂1| < δ0η

−c
0 <

η3c
0 < η0

8 = ν3−ν2. This implies that ψ1(∂Dν3) lies outside the disk Dν2 , and
hence, Dν2 b ψ1(Dν3). Therefore, the image of the disk Dν3 under injective
holomorphic map ψ1 contains Dν2 . Hence, the inverse ψ−1

1 is holomorphic
on Dν2 and sends it to Dν3 . Claim 2 is proved. 2

The function ψ1 is holomorphic on Dr1 and sends it to Dν1 . Indeed,
|ψ̂1(z)| = |ψ1(z) − z| < δ0η

−c
0 on Dν4 c Dν1 , and δ0η

−c
0 < η3c

0 < ν1 − r1.
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Thus, |ψ1(z)| < |z| + (ν1 − r1) ≤ ν1 on Dr1 . The function f0 sends Dν1 to
Dν2 , since

||f0(z)| − |z|| ≤ |f0(z)− λz| ≤ δ0 < η4c
0 <

η0

4
= ν2 − ν1.

The function ψ−1
1 sends Dν2 to Dν3 , by Claim 2. This implies that the

composition f1 = ψ−1
1 ◦ f0 ◦ ψ1 is holomorphic on Dr1 and sends it to

Dν3 ⊂ D1.
Let us now prove (1.22). One has

f0 ◦ ψ1(z) = ψ1 ◦ f1(z) = ψ1(λz) + (ψ1(f1(z))− ψ1(λz)),

f0 ◦ ψ1(z)− ψ1(λz) = (f̂0(z)− Λψ̂1(z)) +R(z) = R(z) = f̂0(ψ1(z))− f̂0(z),

by (1.28) and since ψ̂1(z) is a solution of homological equation (1.29). Thus,

ψ1(f1(z))− ψ1(λz) = R(z).

On the diskDr1 the latter left-hand side has module no less than
(

minf1(Dr1 ) |ψ′1|
)
|f̂1(z)|,

f̂1(z) = f1(z) − λz. The latter minimum of module of derivative is no less
than 3

4 , since f1(Dr1) ⊂ Dν3 and |ψ′1 − 1| = |ψ̂′| < 1
4 on Dν3 , by (1.34).

Recall that ψ1(Dr1) ⊂ Dν1 . Therefore,

|f̂1(z)| < 4

3
|R(z)| = 4

3
|f̂0(ψ1(z))− f̂0(z)| ≤ 4

3
max
Dν1

|f̂ ′0||ψ̂1(z)|,

max
Dν1

|f̂ ′0| ≤
supD1

|f̂0|
1− ν1

<
δ0

1− ν1
=

4δ0

3η0
,

by Cauchy bound (1.15) and (1.19). This together with (1.23) implies that

|f̂1(z)| < 4

3

4δ0

3η0
δ0η
−c
0 =

16

9
δ2

0η
−c−1
0 < δ2

0η
−(c+2)
0 r1.

After denoting c+ 2 by c this yields (1.22). Proposition 1.14 is proved. 2

Lemma 1.10 follows from Proposition 1.14 and the above arguments.
The proof of Siegel Theorem is complete. 2
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1.6 General results: Bruno’s and Yoccoz’s theorem

Consider presentation of a real number θ as a continued fraction:

θ = a1 +
1

a2 + 1
a3+ 1

...

= lim
n→+∞

pn
qn
,
pn
qn

= a1 +
1

a2 + 1
···+ 1

an

.

Definition 1.15 An irrational number θ is a Bruno number, if

the series

+∞∑
n=1

q−1
n ln qn+1 converges.

Theorem 1.16 (A.D.Bruno, 1971). For every Bruno number θ every
conformal germ f(z) = λz + O(z2), λ = e2πiθ, is holomorphically lineariz-
able.

In 1988 J.-C.Yoccos proved his famous converse theorem.

Theorem 1.17 (J.-C.Yoccoz, 1988 [5, 6], Fields Medal 1994). Let θ
be a fixed irrational number, λ = e2πiθ. Then

1) every conformal germ f(z) = λz + O(z2) is linearizable, if and only
if θ is a Bruno number;

2) the germ of quadratic polynomial f(z) = λz+z2 is linearizable, if and
only if θ is a Bruno number.

Remark 1.18 In his papers Yoccoz proves not only his converse Theorem
1.17, but also Bruno’s Linearization Theorem 1.16. His proofs are beautiful
mixture of geometric and analytic arguments, based on a priori bounds for
univalent functions (injective holomorphic functions).

Exercise 1.19 Prove that θ is Diophantine, if and only if it satisfies the
Siegel condition

sup
n∈N

ln qn+1

ln qn
< +∞.

Exercise 1.20 Prove that if θ is Diophantine, then it is a Bruno number.

Hint to Exercise 2.5. Use the following classical properties of the continued
fractions for every n ∈ N:

• θ lies between successive approximating fractions pn
qn

and pn+1

qn+1
,

• pn+1

qn+1
− pn

qn
= (−1)n

qnqn+1
;

• one has qn = anqn−1 + qn−2.
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2 Circle diffeomorphisms, rotation number and an-
alytic conjugacy to rotation

2.1 Rotation number: definition, continuity, monotonicity

Here we briefly recall the material given in [1].
We will be dealing with orientation-preserving homeomorphisms of circle

Rφ/2πZ. Each of them takes the form

f(φ) = φ+ g(φ), g(φ+ 2π) = g(φ).

We can lift f to a homeomorphism F : Rφ → Rφ of the universal cover-
ing line, which is given by the above formula. The lifting F is uniquely
determined up to translation F 7→ F + 2πm, m ∈ Z.

Definition 2.1 The rotation number of F is

ρ := lim
n→+∞

fn(φ)− φ
2πn

.

Theorem 2.2 1) The rotation number ρ exists and is independent on φ.
2) Replacing F by F + 2πm adds m to ρ.
3) The rotation number taken modulo Z is a well-defined invariant of

circle homeomorphism, independent of choice of lifting.

Example 2.3 1) For a rotation f(φ) = Rα(φ) = φ+ α one has ρ = α
2π .

2) One has ρ = 0, if and only if f has a fixed point.
3) One has ρ = p

q , if and only if f has a q-periodic point.
4) If f , w are orientation preserving circle homeomorphisms conjugated

by an orientation preserving homeomorphism h, i.e., f = h−1 ◦ w ◦ h, then
ρ(f) = ρ(w).

Proposition 2.4 1) The rotation number depends continuously on the home-
omorphism in the C0-topology.

2) It is monotonous. Namely, let homeomorphisms f1, f2 have liftings
F1 ≤ F2. Then ρ(F1) ≤ ρ(F2).

For the proofs of statements of the above theorem and example see [1].

Exercise 2.5 Prove the proposition.

Exercise 2.6 Prove that if F1 < F2 and F1 is a translation (i.e., f1 is a
rotation, then ρ(F2) > ρ(F1).
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2.2 Denjoy Conjugacy Theorem and example

Theorem 2.7 (Denjoy, [1]). Every circle C2-diffeomorphism with irra-
tional rotation number is conjugated to rotation. Thus, its orbits are dense.

Theorem 2.8 (Denjoy, [1]). For every irrational number θ there exists a
C1-smooth circle diffeomorphism with ρ = θ that has an invariant Cantor
set. In particular, it is not conjugated to a rotation.

2.3 Herman Conjugacy Regularity Theorem

Theorem 2.9 (M.Herman) Let D ⊂ R denote the union of those irrational
numbers θ such that for every γ > 2 there exists a C = C(γ) > 0 such
that θ is (C, γ)-Diophantine. Then every Ck-smooth (analytic) circle diffeo-
morphism with rotation number lying in D is Ck−2-smoothly (analytically)
conjugated to rotation.

2.4 Analytic circle diffeomorphisms close to rotations. Kolmogorov–
Arnold analytic conjugacy theorem

Consider a family of analytic circle diffeomorphisms

f(φ) = φ+ β + g(φ), β ∈ R, g(φ+ 2π) = g(φ). (2.1)

If g ≡ 0, this is a family of rotations. We prove the next analytic conjugacy
theorem, not covered by Herman’s Theorem, stating that if ρ(f) is (C, γ)-
Diophantine and g is ”small enough” depending on C, γ and the complex
definition domain of f , then f is analytically conjugate to rotation.

Theorem 2.10 (Kolmogorov, Arnold). For every σ,C, γ > 0 there exists a
δ = δ(C, γ, σ) > 0 satisfying the following statements. Let f be as in (2.1),
and let ρ = ρ(f) be (C, γ)-Diophantine, set

α := 2πρ, Uσ := {| Imφ| < σ} ⊂ C/2πZ.

Let g in (2.1) be holomorphic on the cylinder Uσ and continuous on Uσ. Let

max
Uσ

|g| ≤ δ. (2.2)

Then there exists an analytic diffeomorphism h conjugating f to rotation:

f ◦ h(φ) = h(φ+ α). (2.3)
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The proof of Theorem 2.10 given below is similar to the above proof of
Siegel Theorem. We construct successive conjugacies hn−1 to new functions

fn(φ) = φ+ βn + gn(φ) = h−1
n−1 ◦ fn−1 ◦ hn−1, f0 = f,

with gn holomorphic on Uσn , where σn decreases to a positive number 2σ∗,
so that max |gn| → 0 and Hn = h0 ◦ h1 ◦ · · · ◦ hn, converge uniformly to a
map H on Uσ∗ . This will imply H conjugates f with the rotation Rα.

Here we deal with functions holomorphic on an annulus in Cz, z = eiφ.
We use the following Cauchy bound for their Laurent series coefficients.

Proposition 2.11 Let f(z) be a function holomorphic on an annulus Aν,r :=
{ν < |z| < r}, 0 < ν < r, and continuous on its closure. Let f(z) =∑

k∈Z akz
k be its Laurent series. Then

|ak| ≤
maxAr |f |

rk
(2.4)

Proof One has

ak =
1

2πi

∮
|ζ|=r

f(ζ)

ζk+1
,

by the Residue Formula applied to f(z)z−(k+1). This implies (2.4). 2

The inductive construction of hn and fn with bounds implying conver-
gence is based on the following lemma.

Lemma 2.12 (Main Lemma). There exists a universal constant c∗ =
c∗(C, γ) > 0 satisfying the following statements. Let f0 : S1 → S1 be a
circle diffeomorphism

f0(φ) = φ+ β0 + g0(φ) (2.5)

with a (C, γ)-Diophantine rotation number ρ, set α = 2πρ. Let σ0 > 0, and
let g0 be holomorphic on Uσ0 and continuous on its closure. Let

η0 > 0, η0 < min

{
1

4
,
σ0

4

}
, δ0 > 0, δ0 < η4c∗

0 ,

|g0| ≤ δ0 on Uσ0 . (2.6)

Set
σ1 = σ0 − η0, δ1 = δ2

0η
−c∗
0 , η1 =

η0

2
. (2.7)

Then there exists a holomorphic map

h0 : Uσ0− η04
→ C/2πZ, h0(φ) = φ+q0(φ), |q0| ≤ δ0η

−c∗
0 on Uσ0− η04

, (2.8)
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whose restriction to S1 = R/2πZ is a diffeomorphism S1 → S1, such that

f1(φ) := h−1
0 ◦ f0 ◦ h0(φ)

is holomorphic on Uσ1 and can be written as

f1(φ) = φ+ β1 + g1(φ), max
Uσ1

|g1| ≤ δ1. (2.9)

One has δ1 < η4c∗
1 , δ1 < δ

7
4
0 .

Proof of Theorem 2.10 modulo Lemma 2.12. For every n ≥ 0 we
construct inductively hn and fn,

hn(φ) = φ+ qn(φ), fn+1 = h−1
n ◦ fn ◦ hn,

by successively applying the lemma to f0 replaced by fn. Set

Hn := h0 ◦ h1 ◦ · · · ◦ hn : fn = H−1
n−1 ◦ f0 ◦Hn−1,

σ∗ :=
1

2
(σ0 − 2η0) =

1

2
(σ0 −

∑
j

ηj) > 0.

Claim 3. The maps Hn are holomorphic and they converge uniformly
to some H on Uσ∗.
Proof Each map hn−1 is holomorphic on Uσn and sends it to Uσn−1 , since

|qn−1| ≤ δn−1η
−c∗
n−1 < η3c∗

n−1 < ηn−1 = σn−1 − σn on Uσn ,

by (2.8). Therefore, Hn−1 sends Uσn , and hence, U2σ∗ ⊂ Uσn , holomorphi-
cally to Uσ0 . On the set Uσ∗ one has hn(φ) ∈ Uσn , and hence,

|Hn(φ)−Hn−1(φ)| = |Hn−1 ◦ hn(φ)−Hn−1(φ)| ≤ max
Uσn

|H ′n−1| max
Uσn+1

|qn|.

(2.10)
To estimate the latter derivative, let us deal with Hn−1 as a mapping written
in the coordinate

z = eiφ, ln |z| ≤ σn
Set

rn = eσn , r∗ = eσ∗ , An = A(r−1
n , rn), A∗ = A(r−1

∗ , r∗).

Then Hn−1(An) ⊂ A0. The derivative module |H ′n−1| on A∗ is no greater
than r0

r0−r∗ , by Cauchy bound. Therefore, on the same set in the coordinate
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φ one has |H ′n−1| ≤ K := r0r2∗
r0−r∗ , since r∗ is the maximum of derivative of the

exponential map Uσ∗ → A∗, φ 7→ eiφ, and of holomorphic branches of its
inverse. Thus, the left-hand side in (2.10) is bounded by K|maxUσn+1

|qn| <
Kδnη

−c∗
n < Kη3c∗

n , where ηn is a decreasing geometric progression. This
implies uniform convergence of Hn. 2

Finally, the maps Hn are holomorphic, they fix the circle S1 and their
restrictions there are analytic diffeomorphisms. They converge to a map H
uniformly on Uσ∗ . They satisfy the relation f0 ◦Hn = Hn ◦ fn. The map fn
converge to the rotation Rα : φ 7→ φ+α. Indeed, the difference gn = fn−βn
have module less than δn → 0 on Uσ∗ , and hence, converge uniformly to 0.
This implies that each subsequence of fn contains a uniformly converging
subsequence, and its limit is a rotation. The latter rotation coincides with
Rα since the rotation numbers of all of fn, and hence, of the limit, are equal
to ρ = α

2π . Thus, fn → Rα, and passing to limit, we get that

f0 ◦H(φ) = H(φ+ α). (2.11)

The map H is analytic on Uσ∗ , and hence, on S1, by Weierstrass Theorem,
as a limit of uniformly converging sequence of holomorphic functions.

It remains to show that H : S1 → S1 is an analytic diffeomorphism, i.e.,
its inverse is analytic. One can prove this by showing thatHn are injective on
Uσn+1 and their derivatives are bounded from below there by using Cauchy
bound for the derivative of the difference Hn(φ) − φ. But we present a
different proof. Suppose the contrary: H : S1 → S1 is not a diffeomorphism.
Then eitherH is a non-constant non-injective analytic map, orH is constant,
or H is injective and there is a φ0 ∈ R such that H ′(φ0) = 0. The first case
is impossible, since then the restrictions Hn : S1 → S1 are non-injective for
n large enough, which contradicts to the statement that hn, and hence, Hn,
being restricted to S1, are diffeomorphisms. If H ≡ const, then H sends
S1 to a point, hence Hn with big n send S1 to a small circle arc, which is
impossible for a circle diffeomorphism. If H is injective and H ′(φ0) = 0 for
some φ0, then H ′(φ0 + nα) = 0 for all n, by (2.11). Hence, H ′ ≡ 0 on S1,
by density of the sequence nα(mod 2πZ) (density of orbits of the rotation
Rα with irrational rotation number). Therefore, H ≡ const on S1, – a
contradiction. Thus, H is an analytic diffeomorphism S1 → S1 conjugating
f0 to Rα. Theorem 2.10 is proved modulo Main Lemma 2.12. 2
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2.5 Proof of Main Lemma 2.12

Note that the last inequalities on δ1, η1 of the lemma were already proved
in the proof of the Main Lemma for Siegel Theorem. Let us prove the main
part of Lemma 2.12.

Step 1. A priori bounds on Fourier coefficients of g0. Let us
write f0(φ) = φ+ β0 + g0(φ) as

f0(φ) = φ+ α+ ζ0 + g̃0(φ), g̃0(φ) =
∑
k∈Z6=0

ake
ikφ, a−k = ak, (2.12)

g̃0(φ) = g0(φ)− a0, a0 =
1

2π

∫ 2π

0
g0(φ)dφ, ζ0 = a0 + β0 − α.

Claim 4. One has
|ζ0|, max

Uσ0

|g̃0| ≤ 2δ0. (2.13)

Proof The number a0 has module no greater than maxUσ0
|g0| ≤ δ0. This

implies the bound on g̃0 in (2.13). Suppose the contrary to the first bound
in (2.13): say, ζ0 > 2δ0; the case ζ < −2δ0 is treated analogously. Then

f0(φ) = φ+ α+ (ζ0 + g̃0(φ)) > Rα(φ) = φ+ α.

Therefore, ρ(f0) > ρ(Rα) = α
2π , by Exercise 2.6, – a contradiction. 2

Step 2. Homological equation and bound on its solution. We
are looking for a conjugating diffeomorphism h0 killing a big part of g̃0:

h0 : S1 → S1, h0(φ) = φ+ q0(φ), q0(φ) =
∑
k∈Z6=0

bke
ikφ, b−k = bk.

If h0 conjugates f0 to the rotation Rα, then f0 ◦ h0(φ) − h0(φ + α) = 0.
Below we construct an h0 for which the latter difference is very small. To
do this, we use the following formula for the difference:

f0◦h0(φ)−h0(φ+α) = φ+q0(φ)+α+ζ0 + g̃0(φ+q0(φ))−(φ+α+q0(φ+α))

= (g̃0(φ) + q0(φ)− q0(φ+ α)) + ζ0 +R(φ), R(φ) = g̃0(φ+ q0(φ))− g̃0(φ).
(2.14)

The homological equation is vanishing of the expression in the first brackets:

q0(φ+ α)− q0(φ) = g̃0(φ). (2.15)
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Proposition 2.13 The homological equation (2.15) has a unique holomor-
phic solution on a neighborhood of the circle S1 with zero average along S1:

q0(φ) =
∑
k∈Z6=0

bke
ikφ, b−k = bk, bk =

ak
eikα − 1

. (2.16)

The function q0(φ) is holomorphic on Uσ0. There exists a universal constant
c1 = c1(C, γ) such that for every η0 > 0, η0 < min{1

4 ,
σ0
4 },

max
U
σ0−

η0
4

|q0(φ)| ≤ δ0η
−c1
0 . (2.17)

Proof The Fourier series (2.16), if converges, obvious solves (2.15), and is
obviously unique in the above sense. Let us prove its holomorphicity and
bound (2.17). The sum of series (2.16) admits the bound on Uσ0− η04

:

|
∑
k∈Z 6=0

bke
ikφ| ≤ 2

∑
k∈N
|bk|ek(σ0− η04 ) = 2

∑
k∈N

|ak|
|eikα − 1|

ek(σ0− η04 ), (2.18)

since b−k = bk and by (2.16). For every k ∈ N one has

|ak|ekσ0 ≤ max
Uσ0

|g̃0| ≤ 2δ0, (2.19)

by Cauchy bound (Proposition 2.11), writing g̃0 as a Laurent series in the
variable z = eiφ,

|eikα − 1| > C ′

|k|γ
, (2.20)

by Diophantine inequality on α, as in the proof of Siegel’s Theorem. Here
C ′ = C ′(C, γ) > 0. Substituting (2.19) and (2.20) to (2.18) yields

|
∑
k∈Z6=0

bke
ikφ| ≤ 2(C ′)−1δ0

∑
k∈N
|k|γe−

kη0
4 . (2.21)

The series in (2.21) is no greater than some universal constant times η
−(γ+1)
0 ,

see Proposition 1.13. Therefore, the right-hand side in (2.21) is no greater
than δ0η

−c1
0 with some universal constant c1, since η0 <

1
4 . This implies that

the series for the function q0 converges uniformly on every annulus strictly
smaller than Uσ0 and satisfies (2.17). Proposition 2.13 is proved. 2

Thus, the bound (2.8) is proved with a universal constant c1, and hence,
with every constant c∗ ≥ c1. We will choose c∗ ≥ 4. Recall that we choose
δ0 so that δ0 < η4c∗

0 .
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Step 3. Holomorphicity of the composition f1 = h−1
0 ◦ f0 ◦h0 and

its bound (2.9). To prove its holomorphicity, we have to prove injectivity
of the map h0 on appropriate annulus. To this end, let us introduce the
numbers ν0 = σ1 < ν1 < · · · < ν5 = σ0:

ν1 = σ0 −
3η0

4
, ν2 = σ0 −

η0

2
, ν3 = σ0 −

3η0

8
, ν4 = σ0 −

η0

4
.

Proposition 2.14 The map h0(φ) = φ + q0(φ) sends each Uνj , j ≤ 4, to
Uνj+1. Its derivative satisfies the upper bound

|q′0| < δ0η
−c′1
0 <

1

2
on Uν3 ; c′1 = c∗ + 3 is a universal constant. (2.22)

Proof The first statement follows from (2.8) and the elementary inequality
δ0η
−c∗
0 < η3c∗ < νj+1−νj . To prove (2.22), let us consider the function q0(φ)

restricted to the strips Ũνj = {| Imφ| < νj} ⊂ C. On Ũν3 one has

|dq0

dz
| ≤

sup
Ũν4
|q0|

ν4 − ν3
≤ 8δ0η

−(c∗+1)
0 < δ0η

−(c∗+3)
0 < η

3(c∗−3)
0 <

1

2
,

by Cauchy bound and elementary inequalities. 2

Proposition 2.15 The map h0 : Uν3 → Uν4 injective.

Proof The lifting of the map h0 to the closure of the strip Ũν3 is injective.
Indeed, for every two distinct φ1, φ2 lying there one has

h0(φ1)− h0(φ2) = (φ1 − φ2) + (q0(φ1)− q0(φ2)), (2.23)

|q0(φ1) − q0(φ2)| ≤ 1
2 |φ1 − φ2|, by (2.22). Hence, the right-hand side in

(2.23) is non-zero. Let us prove injectivity of the map h0 as an annulus
map. Suppose the contrary: h0 is not injective. Then there exist φ1, φ2 in
the closure of the strip Ũν3 such that φ1 − φ2 /∈ 2πZ while the difference
(2.23) is equal to 2πn for some n ∈ Z. Shifting φ2 by 2πn one can achieve
that the difference (2.23) is equal to zero. But this is impossible, since
φ1 6= φ2 and hence, the first term in the right-hand side in (2.23) dominates
the second term, as above. The proposition is proved. 2

Proposition 2.16 The map h0 sends ∂Uν3 outside Uν2. The map h−1
0 is

holomorphic on Uν2, and it sends is to Uν3.
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Proof The first statement follows from (2.8), as in the proof of Proposition
2.14. The second statement follows from the first one and injectivity of the
map h0 on Uν3 , see Proposition 2.15. 2

Proposition 2.17 The map f1 = h−1
0 ◦ f0 ◦ h0 is holomorphic on Uσ1 and

f1(φ) = φ+ α+ ζ0 + g1(φ), |g1| ≤ δ2
0η
−c3
0 , c3 is a universal constant.

(2.24)

Proof The map h0 is holomorphic on Uσ1 and sends it to Uν1 , by Propo-
sition 2.14. The map f0 sends Uν1 to Uν2 , which is proved similarly to the
analogous statement for the map h0 in Proposition 2.14. The map h−1

0 is
holomorphic on Uν2 . This implies holomorphicity of the composition f1 on
Uσ1 . Let us write f1 as in (2.24) and prove the upper bound (2.24) on
g1. First, let us estimate the difference between the images of f1(φ) and
φ+ α+ ζ0 under the map h0. One has

h0 ◦ f1(φ)− h0(φ+ α+ ζ0) = f0 ◦ h0(φ)− h0(φ+ α+ ζ0) (2.25)

= (g̃0(φ) + q0(φ)− q0(φ+ α)) +B(φ) +R(φ) = B(φ) +R(φ),

B(φ) = q0(φ+ α)− q0(φ+ α+ ζ0), R(φ) = g̃0(φ+ q0(φ))− g̃0(φ),

by (2.14) and since q0 is the solution of the homological equation (2.15).

Proposition 2.18 The remainders B, R are holomorphic on Uν3 and sat-
isfy the inequalities

|B(φ)|, |R(φ)| ≤ δ2
0η
−c2
0 on Uν3 , c2 is an universal constant. (2.26)

Proof Holomorphicity follows from holomorphicity of the function g̃0 on
Uσ0 and the inclusion h0(Uν4) ⊂ Uν5 = Uσ0 , see Proposition 2.14. One has

max
Uν2

|R| ≤ max
Uν3

|g̃′0|max
Uν2

|q0| ≤
2δ2

0η
−c∗
0

ν4 − ν3
< δ2

0η
−c2
0 ,

where c2 > 0 is a universal constant, by the inclusion h0(Uν2) ⊂ Uν3 , Cauchy
bound, (2.13), (2.8) and elementary inequalities,

max
Uν2

|B| ≤ max
Uν2

|q′0||ζ0| ≤ 2δ2
0η
−c′1
0 ,

by (2.22) and (2.13). The latter right-hand side is no greater than δ2
0η
−c2
0

with some universal constant c2. The proposition is proved. 2
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Let us now prove inequality (2.9). On Uσ1 one has

f1(φ)− (φ+ α+ ζ0) = h−1
0 (f0 ◦ h0(φ))− h−1

0 (h0(φ+ α+ ζ0))

= h−1
0 (h0(φ+ α+ ζ0) +B(φ) +R(φ))− h−1

0 (h0(φ+ α+ ζ0)). (2.27)

Both maps h0(φ + α + ζ0) and h0(φ + α + ζ0) + B(φ) + R(φ) send Uσ1 to
Uν2 , since the former map sends it to Uν1 and the difference B(φ) + R(φ)
between the maps is much less than the gap ν2 − ν1, see (2.26). One has

max
Uν2

|h−1
0 )′(φ)| ≤ max

Uν3

|(h′0(φ))−1| < 2, (2.28)

by (2.22), elementary inequalities and since h−1
0 (Uν2) ⊂ Uν3 . Therefore,

on Uν2 the module of the right-hand side in (2.27) is less than 2(|B(φ)| +
|R(φ)|) ≤ 4δ2

0η
−c2
0 < δ2

0η
−c3
0 , by (2.28) and (2.26), with some universal

constant c3 ≥ 4. Proposition 2.17 is proved. 2

Now it remains to correct c∗ to be greater than all the above-mentioned
universal constants c∗ + 3, c1, . . . , c3 and δ0 < η4c∗

0 and set δ1 = δ2
0η
−c∗
0 .

Then (2.9) follows from Proposition 2.17. The Main Lemma 2.12 is proved.

3 Introduction to symplectic geometry and dy-
namics

3.1 Symplectic manifolds. Basic examples

Definition 3.1 Consider an antisymmetric bilinear form ω on vector space
Rm. For every vector u ∈ Rm let us introduce the linear functional

iuω : Rm → R : (iuω)(v) := ω(u, v).

The kernel of the form ω is kernel of the linear operator Rm → Rm∗: u 7→
iuω. That is, the set of vectors u such that iuω(v) = 0 for all v ∈ Rm. A
form ω is called non-degenerate, if its kernel is zero.

Remark 3.2 A non-degenerate antisymmetric bilinear form ω exists only
on even-dimensional vector spaces R2n. It always generates a non-zero vol-
ume form ω∧n.

Definition 3.3 A symplectic manifold is a manifold M equipped with a
closed non-degenerate 2-form ω. Non-degenerate means that at each point
x ∈ M the corresponding antisymmetric bilinear form on TxM is non-
degenerate: has zero kernel. Due to the above remark, each symplectic man-
ifold is even-dimensional and has a natural volume form ω∧n, n = 1

2 dimM .
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Example 3.4 The standard symplectic space equipped with standard (canon-
ical) symplectic form is

(R2n
q1,...,qn,p1,...,pn , ωst), ωst := dq ∧ dp =

n∑
j=1

dqj ∧ dpj .

Another similar example is the torus (T2n, ωst).

Example 3.5 The cotangent bundle T ∗M of a smooth n-dimensional man-
ifold M carries a natural symplectic form ω. Indeed, consider the Liouville
1-form α on T ∗M defined as follows. Take an arbitrary q ∈M , a p ∈ T ∗qM
and a vector v ∈ T(q,p)(T ∗M). Let π : T ∗M → M denote the standard
bundle projection. Set

α(v) := p(dπ(v)), ω := −dα.

Let now U be a local chart on M identified with a domain in Rnq1,...,qn .
There is a canonical isomorphism π−1(U) = U×Rnp1,...,pn such that for every
points q̃ ∈ U and p = (p1, . . . , pn) ∈ Rn the corresponding 1-form is on Tq̃U
is pdq =

∑n
j=1 pjdqj . Then for every v as above one has

α(v) =
∑
j

pjdqj(dπ(v)) = (
∑
j

pjdqj)(v).

This means that

α =
∑
j

pjdqj , ω = −dα = ωst = dq ∧ dp.

3.2 Hamiltonian vector fields. Basic conservation laws

Definition 3.6 Let (M,ω) be a symplectic manifold, H : M → R be a
smooth function. The Hamiltonian vector field with the Hamiltonian func-
tion H is the unique vector field XH on M such that

iXHω = dH. (3.1)

Proposition 3.7 The flow of the Hamiltonian vector field XH preserves H
and the symplectic form ω.

Proof One has dH
dXH

= ω(XH , XH) = −ω(XH , XH), by definition and since
ω is anti-symmetric. Therefore, the latter quantity vanishes, thus, H has
zero derivative along the field XH . Hence, it is invariant under the flow.
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The proof of invariance of the form ω is based on Cartan Formula for
Lie derivative. Namely, recall that for a given k-form ω and a vector field X
on a manifold M the Lie derivative LXω of the form ω along the field X is
defined as follows. Let gtX denote the time t flow map of the field X. Then

LXω :=
d

dt

(
(gtX)∗ω

)
|t=0.

Here (gtX)∗ω is the pullback of the form ω under the time t flow map. The
Cartan Formula is

LXω = iX(dω) + d(iXω). (3.2)

Applying it to the symplectic form ω and the field XH we get

LXHω = iXH (dω) + d(iXHω) = 0 + d(dH) = 0,

since dω = 0 and iXHω = dH, by definition. Finally, the Lie derivative of
the form ω along the field XH vanishes. Hence, ω is invariant under its flow.
The proposition is proved. 2

Corollary 3.8 Each Hamiltonian vector field (and in general, each vector
field preserving the symplectic form) is always volume-preserving for the
volume form generated by the symplectic form.

Exercise 3.9 Prove Cartan Formula.
Hint. It suffices to prove it in the case, when M is a domain in Rm and

X is a constant vector field, say X = ∂
∂x1

. In this case

LX(
∑

i1<···<ik

ai1...ik(x)dxi1 ∧ · · · ∧ dxik) =
∑ ∂

∂x1
ai1...ik(x)dxi1 ∧ · · · ∧ dxik .

Prove the latter equality.

3.3 Lie algebra structures. Poisson brackets of functions and
Lie bracket of vector fields

Definition 3.10 Let (M,ω) be a symplectic manifold. The Poisson bracket
of smooth functions F,G : M → R is

{F,G} := ω(XF , XG) = dF (XG) = −dG(XF ). (3.3)

Let us recall the following definition from differential geometry.
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Definition 3.11 The Lie bracket (or commutator) of two vector fields X
and Y on a manifold M is the field Z = [X,Y ] defined in any of the two
following equivalent ways.

1) Set [X,Y ] to be the Lie derivative LXY of the field Y along X, that
is

[X,Y ] = LXY :=
d

dt

(
(g−tX )∗Y

)
.

Here Yt = (g−tX )∗Y is the pushforward of the field Y under the flow map g−tX ,
that is,

Yt(q) := (dg−tX )(gtX(q))Y (gtX(q)).

2) For every vector field X on M consider the corresponding first order
linear differential operator LX : f 7→ LXf := df(X) acting on smooth
functions on M . For every two vector fields X, Y on M one has

LXLY − LY LX = LZ , Z is a vector field on M. (3.4)

Indeed, the latter commutator is a first order differential operator: the terms

with second derivatives cancel out due to relation ∂2f
dxidxj

= ∂2f
dxjdxi

. The field

Z is called the Lie bracket [X,Y ] of the fields X and Y .

Theorem 3.12 The C∞-smooth vector fields on M form a Lie algebra un-
der the Lie bracket.

Proof Recall that an abstract associative algebra always carries a stan-
dard Lie algebra structure, [a, b] := ab− ba, and the Jacobi identity follows
immediately by definition. Let us embed the vector fields to the associa-
tive algebra of differential operators acting on functions, with multiplication
given by composition via the operator X 7→ LX . The restriction of the as-
sociative algebra bracket to the vector fields coincides with the Lie bracket,
by (3.4). This together with the Jacobi identity in the associative algebra
implies the Jacobi identity for the Lie bracket. 2

Theorem 3.13 1) The Poisson bracket is a Lie algebra structure on the
space of C∞-smooth functions, i.e., it satisfies the Jacobi identity

{{A,B}, C}+ {{C,A}, B}+ {{B,C}, A} = 0. (3.5)

2) One has

[XF , XG] = −X{F,G} for every two functions F,G : M → R. (3.6)
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In other terms, the map F 7→ −XF sending a function to minus the corre-
sponding Hamiltonian vector field is a Lie algebra homomorphism between
the function space equipped with Poisson bracket and the vector field space
equipped with the Lie brackets. The Hamiltonian vector fields thus form a
Lie subalgebra in the Lie algebra of vector fields.

Proof We use the following Leibnitz rule for the Lie derivative.

Proposition 3.14 For every C1-smooth k-form ω on a manifold M and
every collection of C1-smooth vector fields Y , X1, . . . , Xk one has

LY (ω(X1, . . . , Xk)) = (LY ω)(X1, . . . , Xk)

+

k∑
j=1

ω(X1, . . . , Xj−1, LYXj , Xj+1, . . . , Xk). (3.7)

Proof Let ωt = (gtY )∗ω denote the pullback of the form ω under the time
t flow map gtY of the field Y . Let Xj,t := (g−tY )∗Xj denote the pushforwards
of the fields Xj under the inverse map. The value at a point p ∈ M of
the Lie derivatives in (3.7) are equal to the derivatives in t at t = 0 of the
families ωt and Xj,t respectively. Now let us fix a point p and consider the
latter families as families of forms and vectors in TpM = Rn. The above
statement together with the usual Leibnitz rule applied to the family of
functions ωt(X1,t, . . . , Xk,t) in t as sums of products of the components of
the vectors Xj,t and coefficients of the form ωt imply (3.7). 2

Let us now prove (3.5). One has

{{A,B}, C} = {ω(XA, XB), C} = LXC (ω(XA, XB))

= ω([XC , XA], XB) + ω(XA, [XC , XB]), (3.8)

by (3.7) and since LXCω = 0 (invariance of the form ω under a Hamiltonian
flow) and since the Lie derivative of a vector field is a commutator. The
latter right-hand side is equal to

−dB([XC , XA])+dA([XC , XB]) = (LXALXC−LXCLXA)B+(LXCLXB−LXBLXC )A

= {{B,C}, A} − {{B,A}, C}+ {{A,B}, C} − {{A,C}, B},

since LXCB = {B,C} etc. This together with (3.8) yields

{{B,C}, A} − {{B,A}, C} − {{A,C}, B} = 0,
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which is equivalent to (3.5).
Let us prove Statement 2). The sum of the two first terms in (3.5) is

equal to
(LXCLXB − LXBLXC )A = L[XC ,XB ]A.

The third term is equal to minus the derivative of the function A along the
field X{B,C}. The above statements hold for every function A. This together
with (3.5) yields [XC , XB] = X{B,C} = −X{C,B}. 2

3.4 Canonical coordinates. Darboux Theorem

Definition 3.15 Local coordinates (q1, . . . , qn, p1, . . . , pn) on a symplectic
manifold are called canonical, if in these coordinates the symplectic form is
standard:

ω = ωst := dq ∧ dp =

n∑
j=1

dqj ∧ dpj .

Theorem 3.16 (Darboux). On every symplectic manifold each point has
a neighborhood on which canonical coordinates exists. That is, each sym-
plectic form is standard in some local chart.

Proof We prove Theorem 3.16 by induction in dimension. To do this,
let us first make the following preliminary construction. Let (M,ω) be
a symplectic manifold. Fix a point x ∈ M and its neighborhood U =
U(x) ⊂M on which some smooth local chart exists. Thus, we can and will
consider that U is a domain in R2n equipped with some symplectic form
ω. Take an arbitrary smooth function H : U → R without critical points,
say, a coordinate function, H(x) = 0. Fix a hypersurface Γ ⊂ U through
x transversal to the Hamiltonian vector field XH . For every y ∈ U let t(y)
denote the time needed to go to y from the hypersurface Γ along an orbit of
the field XH . The above Γ exists and the function t : U → R is well-defined
if U is chosen small enough. Then

{t,H} = dt(XH) = 1, (3.9)

by construction, and t(x) = H(x) = 0.
Induction base: n = 1. Then q = t, p = H are canonical coordinates.
Induction step. Let Theorem 3.16 be proved for n = k. Let us prove it

for n = k + 1. Set q1 = t, p1 = H. Let us construct additional functions
q2, . . . , qn, p2, . . . , pn forming, together with q1, p1, a system of canonical
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coordinates. To do this, consider the projection π : U → R2, y 7→ (q1, p1)
and for every (a, b) ∈ R2 set

Sa,b := π−1(a, b) ⊂ Γa = {H = a}, S := S0,0 ⊂ Γ = Γ0.

Each Sa,b is a hypersurface in Γa transversal to the field XH . The restriction
to Sa,b of the form ω is symplectic due to the next proposition.

Proposition 3.17 Consider the vector space R2n equipped with a non-degenerate
skew-symmetric bilinear form ω. For every codimension one vector subspace
Γ ⊂ R2n the restriction to Γ of the form ω has one-dimensional kernel. For
every codimension one vector subspace S ⊂ Γ transversal to the kernel the
restriction ω|S is non-degenerate.

Proof Fix a vector v ∈ R2n transversal to Γ. Suppose the contrary: there
exist two linearly independent vectors u1, u2 ∈ Γ lying in the kernel of the
form ω|Γ. There exists their non-trivial linear combination η = a1u2 + a2u2

such that ω(η, v) = 0. Then ω(η, z) = 0 for every z ∈ R2n, by construction.
Hence, the form ω is degenerate on the ambient space Rn2, – a contradiction.

Suppose, by contradiction, that the form ω|S has a non-zero kernel,
let u be its element. Then ω(u,XH) = 0, and hence u lies in the kernel
of the restriction ω|Γ, as does XH . Therefore, the vectors u and XH are
proportional, which contradicts transversality of the vector XH and S in Γ.
The proposition is proved. 2

Proposition 3.18 There is a smooth foliation F of the domain U by sur-
faces tangent to the commuting fields Xt and XH . Its leaves are transversal
to the fibers Sa,b, or equivalently, they are locally diffeomorphically projected
to R2 by the projection π to the coordinates (q1, p1).

The proposition follows from commutativity and linear independence of the
fields Xt, XH at each point and the equality dt(XH) = 1 = −dH(Xt) = 1.

There exist canonical coordinates (q2, . . . , qn, p2, . . . , pn) on the symplec-
tic manifold S ∩ U after shrinking U , by the induction hypothesis. Let us
extend them to the whole U by requiring that they be constant along the
leaves of the foliation F .

Proposition 3.19 The coordinates (q1, . . . , qn, p1, . . . , pn) on U thus con-
structed are canonical.
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Proof For every coordinate ζ = qj , pj with j ≥ 2 one has

{ζ, q1} = dζ(Xt) = {ζ, p1} = dζ(XH) = 0,

since ζ is constant along surfaces tangent to Xt and XH . It remains to check
that for every j, ` = 2, . . . , n one has

{qj , q`} = {pj , p`} = 0, {qj , p`} = δj`. (3.10)

Proposition 3.20 Each function ζ = qj , pj, j ≥ 2, satisfies the following
statements.

1) The vector field Xζ is tangent to the fibers Sa,b, i.e., has zero projection
dπ to the coordinates (q1, p1).

2) The field Xζ restricted to each fiber Sa,b coincides with the Hamilto-

nian vector field X
ζ̃

of the restriction ζ̃ := ζ|Sa,b.

Proof One has dq1(Xζ) = {q1, Xζ} = 0. This imples Statement 1). Thus,
at each point y ∈ Sa,b both vectors u := Xζ(y) and v := X

ζ̃
(y) lie in TySa,b

and satisfy the relation iuω = ivω = dqj on TySa,b. This together with
non-degeneracy of the form ω on TySa,b implies that u = v and proves the
proposition. 2

The Poisson bracket of any two coordinate functions q2, . . . , qn, p2, . . . , p`
is equal to the value of the form ω on the corresponding Hamiltonian vector
fields. The latter coincide with the Hamiltonian fields of the restriction
to Sa,b of the functions in question, by Statement 2) of Proposition 3.20.
Therefore, the bracket in question is equal to the bracket of the restrictions
of the functions to Sa,b. But the above coordinates restricted to each Sa,b are
canonical, since this holds on S = S0,0, by assumption, and by invariance of
the form and the fibration under flow maps of the fields Xq1 and Xp1 . This
implies (3.10) and proves Proposition 3.19. 2

Proposition 3.19 immediately implies the Darboux Theorem. 2

3.5 Symplectomorphisms

Definition 3.21 A diffeomorphism between two symplectic manifolds is
called a symplectomorphism, if its pullback map sends one symplectic form
into the other. A self-diffeomorphism F of a symplectic manifold that pre-
serves the symplectic form is called a symplectomorphism or a symplectic
automorphism. If the underlying invariant symplectic form is standard, i.e.,
dq∧dp in some coordinates (q, p) on a source domain and on its image, then
F is called a canonical transformation.
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Example 3.22 1) Translations of the space R2n
q1,...,qn,p1,...,pn equipped with

the standard form dq ∧ dp are symplectomorphism.
2) Consider the product M = Rnq × Rn∗p of a vector space and the space

of linear functionals on it. Let α be the 1-form on it that is defined as
follows: for every (q, p) ∈M and every v ∈ T(q,p)M one has α(v) = p(dπ(v)),
where π is the projection to the q-space. The differential dα is the standard
symplectic form on M . In the coordinates (q1, . . . , qn, p1, . . . , pn), where pj
are the coordinates on Rn∗ dual to q`, one has ω = ωst = dq ∧ dp. Each
linear automorphism A : Rn → Rn induces the conjugate A∗ : Rn∗ → Rn∗
acting by taking pullback: (A∗p)(v) = p(Av). In the above coordinates A∗

is given by the matrix At transposed to A. The linear automorphism

F : M →M, F (q, p) := (A−1q, A∗p)

preserves the form α, and hence ω. See a more general statement below.

Example 3.23 3) Let N be an arbitrary smooth manifold, set M = T ∗N .
Recall that M is equipped with the standard symplectic form ω = dα, where
α is the Liouville form. We denote points in M by (q, p), q ∈ N , p ∈ T ∗qN .
Let β be a smooth 1-form on N . Its restriction to the fiber TqN will be
denoted by βq. The map

Fβ : (q, p) 7→ (q, p+ βq) (3.11)

is a symplectomorphism, if and only if the form β is closed. Indeed,

F ∗βα = α+ π∗β, (3.12)

which follows by definition, since for every (q, p) ∈ M and v ∈ T(q,p)M one
has α(v) = p(dπ(v)). Therefore, F ∗βω = ω + π∗(dβ). This implies the above
symplectomorphicity criterium. In standard coordinates (q, p) on M over a
local chart (q1, . . . , qn) on N the form β is represented by a vector function

β = (β1(q), . . . , βn(q)).

Symplectomorphicity of the map Fβ, i.e., closeness of the form β, is equiv-
alent to the system of equations

∂βi
∂qj

=
∂βj
∂qi

for every i, j = 1, . . . , n. (3.13)

4) In the above conditions let f : N → N be a smooth diffeomorphism,
and let F = f∗ : T ∗N → T ∗N be the corresponding pullback map acting
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on 1-forms on fibers. Then F : M → M preserves the Liouville form α,
and hence, is a symplectomorphism. Indeed, it sends each point (q, p) to
(f−1(q), (df(f−1(q)))∗p). Its differential sends a vector v ∈ T(q,p)M to the
vector in Tf(q,p)M whose projection to the base is (df(f−1(q)))−1(dπ(v)) ∈
Tf−1(q)N . Therefore, the value on v of the pullback of the form α under the
map F is equal to

(df(f−1(q)))∗p)[(df(f−1(q)))−1(dπ(v))]

= p(df(f−1(q)(df(f−1(q)))−1dπ(v)) = p(dπ(v)) = α(v).

Thus, F is a symplectomorphism. Let q1, . . . , qn be local coordinates near
a point y ∈ N and let us denote local coordinates near f(y) by the same
symbol q1, . . . , qn. Let p1, . . . , pn denote the corresponding dual linear coor-
dinates on the fibers in T ∗N : the coordinates (q, p) are canonical for the form
ω. Then in the coordinates (q, p) the symplectomorphism F is a canonical
map given by the formula

(q, p) 7→ (f−1(q), (df(f−1(q)))∗p). (3.14)

3.6 Generating functions. Local space of symplectomorphisms

Definition 3.24 Consider an arbitrary diffeomorphism between domains,

F : U → V, U ⊂ R2n
q,p, V ⊂ R2n

Q,P ,

q = (q1, . . . , qn), p = (p1, . . . , pn), Q = (Q1, . . . , Qn), P = (P1, . . . , Pn).

We say that the coordinates (q,Q) are free, if the map (q, p) 7→ (q,Q ◦F ) is
a diffeomorphism on U . Note that a necessary condition to be free is that
the Jacobian matrix ∂Q

∂p is non-degenerate.

In what follows we consider that U is simply connected. We equip the ambi-
ent space R2n with the standard symplectic form ωst = dq∧ dp, respectively
dQ ∧ dP .

Theorem 3.25 In the above assumptions the diffeomorphism F is a canon-
ical transformation, i.e., a symplectomorphism, if and only if

PdQ− pdq = dg(q,Q), g is a function on U,

the function g is written as a function in free coordinates (q,Q) parametriz-
ing U . Here PdQ denotes the 1-form on U that is the pullback of the form
PdQ under the map F . The above function g, if exists, is unique up to
additive constant.
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Proof The form −pdq is a primitive of the symplectic form: d(−pdq) =
dq ∧ dp. Therefore, the map F is a symplectomorphism, if and only if the
pullback of the form PdQ and the form pdq differ by a closed 1-form. Each
closed 1-form on a simply connected domain U is exact, the differential of
a function uniquely determined by the form up to additive constant. This
implies the statement of the theorem. 2

Definition 3.26 If in the conditions of Theorem 3.25 the map F is a sym-
plectomorphism, then the corresponding function g is called its generating
function.

Remark 3.27 Theorem 3.25 implies that locally the space of symplecto-
morphisms looks like the space of functions of 2n variables.

4 Integrable systems. Arnold–Liouville Theorem

The standard integrable Hamiltonian system is a system in canonical vari-
ables (q, p) with a Hamiltonian function on U ⊂ R2n that depends only on
n variables, say, H = H(p). In this case the system takes the form{

q̇ = w(p) = dH
dp

ṗ = 0,
(4.1)

and the system has n first integrals p1, . . . , pn. They are in involution, which
means that {pi, pj} = 0. The next classical theorem states the converse.

Theorem 4.1 (Arnold – Liouville). Let a Hamiltonian system on a
2n-dimensional symplectic manifold (M,ω) with a Hamiltonian function H
have n independent first integrals in involution

H1 = H, H2, . . . ,Hn : ”in involution” means that {Hi, Hj} = 0.

Independence means that dHj(y) are linearly independent at every point
y ∈M . Consider the vector function H := (H1, . . . ,Hn).

1) The level surfaces H−1(a), a = (a1, . . . , an) ∈ H(M) ⊂ Rn, are sub-
manifolds tangent to all the vector fields XHj . They are Lagrangian, which
means that the restriction to each of them of the symplectic form is zero.

2) If Sα is a compact connected component of the level set H−1(α), then
the following statements hold:

a) There exists a diffeomorphism Sα → Tn = Rnφ1,...,φn/2πZ
n.
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b) The above diffeomorphism can be chosen to transform XHj to constant
vector fields on Tn depending only on the parameter α. The restriction to
Sα of the system thus takes the form

φ̇ = w(α), w(α) = (w1(α), . . . , wn(α)).

c) There exists a neighborhood U = U(α) ⊂ Rn such that for every a ∈ U
the level set H−1(a) contains a compact connected component Sa close to Sα
and the open subset

N := ∪a∈USa ⊂M
admits a symplectomorphism

F : (N,ω)→ (Tn×V, ωst), Tn = Rnφ1,...,φn/2πZ
n, V ⊂ RnI1,...,In , ωst = dφ∧dI,

satisfying the following statements:
(i) one has I ◦ F = g ◦ H, where g is a diffeomorphism U → V , i.e., F

sends each fiber Sa to a toric fiber;
(ii) in the new coordinates (φ, I) the Hamiltonian functions Hj are func-

tions just of I, thus so are the fields XHj , and the system takes the form{
φ̇ = w(I) := ∂H

∂I

İ = 0.
(4.2)

In particular, the latter system is integrable in quadratures.

Definition 4.2 The above coordinates (φ, I) are called the action-angle
coordinates: I is the action; φ is the angle.

Proof of Theorem 4.1. Let us first prove Statements 1), 2a),b). The level
subsets {H = a} are smooth n-dimensional submanifolds, by independence
of the functions Hi. One has dHj(XHi) = {Hj , Hi} = ω(XHj , XHi) = 0 for
every i and j. Thus, Hj = const along orbits of each field XHi . Hence, XHi

is tangent to each above level submanifold, and hence, to Sα. The above
statement also implies that the fields XHi(y) generate the whole tangent
space to the level submanifold through each y, and ω vanishes on each pair
of them. Hence, it is a Lagrangian submanifold. Statement 1) is proved.

The vector fields XHi are linearly independent at each point y ∈ M , as
are the differentials dHi(y). They commute, since {Hi, Hj} = 0. For every
compact component Sa of the submanifold {H = a} the restrictions to Sa of
the fields XHi have well-defined flow maps gtXHi

: Sa → Sa for every t ∈ R.

Thus, for every x0 ∈ Sa there is a smooth map

Πa : Rnt1,...,tn → Sa, (t1, . . . , tn) 7→ gt1XH1
◦ · · · ◦ gtnXHn (x0). (4.3)
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Claim. The map Πa : Rn → Sa is a universal covering.
Proof The image Πa(Rn) ⊂ Sa is open. Moreover, there exist δ, ε > 0
such that the map Πa is injective on the ball of radius δ around each point
z ∈ Rn, and its Πa-image contains the ε-ball in Sa centered at Πa(z). By
definition, the latter ε-ball is the intersection with Sa of the ε-neighborhood
of the point x0 in some fixed Riemannian metric on M . The above statement
follows by linear independence of the fields XHi and compactness. It implies
that the image Πa(Rn) has no boundary points and hence, coincides with
all of Sa, and the map Πa is a covering, hence universal. 2

The above coordinates (t1, . . . , tn) on the universal coverings are uniquely
defined up to change of the point x0, which results in translation of the coor-
dinates t by a vector depending on the transversal parameter a. The liftings
to Rn of the vector fields XHj coincide with the fields ∂

∂tj
, by construction.

The covering desk transformations Rn → Rn are translations, since they
preserve the above fields. Thus, Sa is isomorphic to the quotient of the
space Rn by a discrete additive subgroup Λ with compact quotient. The
subgroup Λ has a finite number, say k, of generators. They are linearly
independent over R. Indeed, if, to the contrary, there were a subsystem of
generators that are linearly dependent over R but not over Q, then they
would generate a non-discrete subgroup, – a contradiction. Their number k
is equal to n: otherwise their linear combinations with real coefficients do
not cover all of Rn, then the quotient is not compact. Finally, Λ has n gen-
erators, linearly independent over R. Hence, there is a linear transformation
A : Rn → Rn sending Λ to the lattice 2πZn. Together with the covering
projection Πa : Rn → Sa, it induces a diffeomorphism Sa → Tn sending each
XHj to a constant field. Statements 2a),b) are proved.

Let us prove Statement 2c). The first statement, existence of a compact
component Sa close to Sα in H−1(a) for a close to α follows immediately
by transversality. It implies, again by transversality, that the union N is
a n-dimensional submanifold. It remains to prove existence of a rectifying
symplectomorphism F . This will be done in the following steps. They deal
with the universal covering Ñ of the manifold N , which is the union of the
universal coverings S̃a of the topological tori Sa.

Step 1). Construction of preliminary canonical coordinates (t1, . . . , tn,H1, . . . ,Hn)
on the universal cover Ñ . We have already constructed some preliminary
coordinates t1, . . . , tn on universal coverings S̃a, see (4.3). They were defined
by a base point x0 ∈ Sa, but for different choises of x0 the corresponding
t-charts on S̃a differ by translation. The above coordinates t1, . . . , tn iden-
tify each S̃a with Rn, and XHi = d

dti
. Let us correct the cordinates t by
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fiber-depending translations in order make the coordinates (t,H) canonical:

{ti, tj} = 0, {ti, Hj} = δij . (4.4)

1a) Construction of the coordinate t1. Recall that the vector fields XHi

commute. Therefore, there exists a foliation, denoted by F1, by (n − 1)-
dimensional leaves (local submanifolds), each leaf being saturated by orbits
of the fields XH2 , . . . , XHn . Fix an integral hypersurface Σ1 of the foliation
F1, i.e., a hypersurface that is a union of leaves, that is transversal to the
vector field XH1 . It cuts each universal cover S̃a by an affine subspace
parallel to the subspace generated by the vectors XHi = d

dti
. For every

y ∈ Ñ close to S̃α let t1(y) denote the time needed to reach y along a
trajectory of the field XH1 starting at Σ1. On each universal covering it
coincides with the previously constructed coordinate t1 up to translation.
One has

{t1, Hj} = dt1(XHj ) = δ1j , (4.5)

Indeed, the above equalities holds on Σ1, by construction. They remain
valid along orbits of the field XH1 : its time τ flow translates t1 by τ and
preserves each field XHj , since [XH1 , XHj ] = 0.

1b) Construction of the coordinate t2. The vector fieldsXt1 , XH1 , . . . , XHn

commute, by assumption and (4.5). They are linearly independent at each
point, by construction. Let F2 denote the foliation by n-dimensional leaves
saturated by orbits of the fields Xt1 , XH1 , XH3 , . . . , XHn . Fix its integral
hypersurface Σ2 that is transversal to the field XH2 . Let us define the time
function t2 as above with Σ1, XH1 replaced by Σ2, XH2 . One has

{t2, Hj} = δ2j , {t1, t2} = dt2(Xt1) = 0, (4.6)

as in the above construction.
1c) Construction of t3, . . . , tn. The fields Xt1 , Xt2 , XH1 , . . . , XHn com-

mute, by (4.6). Let F3 denote the foliation by (n + 1)-dimensional leaves
saturated by orbits of the fields Xt1 , Xt2 , XH1 , XH2 , XH4 , . . . , XHn . Fix its
integral surface Σ3 transversal to XH3 and construct t3 as above. Contin-
uing this procedure we construct coordinates t1, . . . , tn satisfying (4.4) and
hence, canonical.

The vector fields XHj lifted to Ñ are tangent to the fibers H = const

and coincide with the fields ∂
∂tj

. The desk transformations of the covering

Ñ preserve the lifted fields and the vector function H. Hence, they are
translations by vectors depending on the transversal parameter a = H. For
every a the translation vectors form a cocompact lattice, i.e., an additive
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subgroup in Rn with compact quotient. Hence the above lattice is generated
over Z by n vectors, which we will denote v1, . . . , vn. Each vd = vd(H) is a
function of the coordinates H = (H1, . . . ,Hn).

Step 2) Simultaneous symplectic rectification of the lattices. Here we
construct a symplectomorphism

F : (Ñ , ω)→ (Rnφ × V, ωst) V ⊂ RnI , φ = (φ1, . . . , φn), I = (I1, . . . , In).

Here by ω we denote the lifting to Ñ of the form ω, and ωst = dφ ∧ dI. We
construct F so that I is a vector function of the coordinates H, and F sends
fibers to fibers by affine maps depending on the parameter H. We construct
F so that the corresponding linear maps send the basis lattice vectors vd(H)
to the standard basis vectors 2πej . This will imply that F passes to a quo-
tient symplectomorphism N → Tn×V . Then the corresponding coordinates
(φ, I) are action-angle coordinates we are looking for.

In the above coordinates (t,H) each covering desk transformation

Td : Ñ → Ñ , Td : (t,H)→ (t+ vd(H),H)

is a symplectomorphism for the standard form ωst. Let vd = (v1d, . . . , vnd)
be the coordinate representation of the vector function vd. The 1-form∑

j vjd(H)dHj is closed, by symplectomorphicity, see Example 3.23. We
consider that it is exact, choosing U simply connected. Thus,

vd = (
∂gd
∂H1

, . . . ,
∂gd
∂Hn

) for some function gd(H) on U.

Consider the map

g : U → Rn, (H1, . . . ,Hn) 7→ (g1(H), . . . , gn(H)).

It is a local diffeomorphism, since the gradients vd(H) of the functions gd(H)
are linearly independent at every H ∈ U . We can and will consider that it
is a diffeomorphism U → V ⊂ Rn, shrinking U . Consider the map

F : Ñ → Rnφ × RnI , (t,H) 7→ (2πt(dg(H))−1, (2π)−1g(H)). (4.7)

Here t(dg(H))−1 is the product of a horizontal vector t = (t1, . . . , tn) and the
matrix (dg(H))−1. The above map F can be considered as a map between
the cotangent bundles of the domains U and V , where the bases are equipped
with coordinates H and I respectively and the fibers with coordinates t
and φ respectively. Recall that (t,H) and (φ, I) are canonical coordinates.
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The map F is the lifting to the cotangent bundle of the diffeomorphism
(2π)−1g(H), which follows from (4.7). Hence, it is a symplectomorphism, see
Example 3.23, 4). Its restriction to each fiber is a linear operator Rn → Rn
sending each vector vd(H) to 2πed; here ed is the d-th vector in the standard
basis. Thus, F induces a quotient symplectomorphism N → Tnφ × VI . The
action-angle coordinates (φ, I) are constructed. Theorem 4.1 is proved. 2

Remark 4.3 In the proof of Arnold–Liouville Theorem given in [1] the con-
struction of action-angle coordinates is done by constructing the generating
function of a symplectomorphism F we are looking for.

5 The KAM invariant tori theorem: analytic case

5.1 Analytic theorem on persistence of invariant tori

This theorem deals with perturbations of a standard integrable system on
a domain Tn × U ⊂ Tnφ × Rnp , given by an analytic Hamiltonian function
K0 = K0(p) depending only on the p-variables:

Tn = Rnφ1,...,φn/2πZ
n, p = (p1, . . . , pn).

We impose the following
non-degeneracy condition: the Hessian matrix ∂2K0

∂p2
is non-degenerate

for every p ∈ U .
The corresponding Hamiltonian system takes the form{
φ̇ = w(p)

ṗ = 0,
w(p) = (w1(p), . . . , wn(p)), wj(p) =

∂H0(p)

∂pj
. (5.1)

Remark 5.1 The non-degeneracy condition is equivalent to the condition
that the frequency map p 7→ w(p) is a local diffeomorphism.

Recall that a vector w = (w1, . . . , wn) ∈ Rn is called Diophantine, if there
exist constants C, γ > 0 such that

| < w,m > | ≥ C

|m|γ
for every m = (m1, . . . ,mn) ∈ Zn \ {0}. (5.2)

In this case it is called (C, γ)-Diophantine. If for a given number γ a vector
is (C, γ)-Diophantine for appropriate C > 0, then it is called γ-Diophantine.
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Exercise 5.2 For every γ > n− 1 the set of γ-Diophantine vectors has full
measure.

In what follows for every s > 0 we denote

∆s := {(r1, . . . , rn) ∈ Cn | max
j
|rj | < s},

Tns := {φ = (φ1, . . . , φn) ∈ Cn/2πZn | | Imφj | < s for all j = 1, . . . , n},

For a domain U ⊂ Rn we set

Us := {r ∈ Cn | | Im rj | < s, and Re r lies in the s− neighborhood of U.

Theorem 5.3 (Kolmogorov – Arnold). Fix C, γ, s > 0. Let K(p) be
a function analytic on UC,s and continuous on its closure and satisfying
the non-degeneracy condition on Us. There exists an ε0 = ε0(C, γ,K) > 0
satisfying the following statement. Consider a new, perturbed Hamiltonian
function H(φ, p) analytic on Tns ×Us and continuous on its closure. Let for
some ε ∈ (0, ε0) one have

|H(φ, p)−K(p))| ≤ ε for every (φ, p) ∈ Tns × Us. (5.3)

Then for every ζ ∈ U corresponding to a (C, γ)-Diophantine frequency w(ζ)
the Hamiltonian system with the Hamiltonian function H has an invariant
n-dimensional torus

T nζ = {p = ζ+gζ(φ)}, gζ is an analytic function on Tn, max |gζ | < δ(K, ε),

δ(K, ε)→ 0, as ε→ 0.

The Hamiltonian flow on the torus T nζ is analytically conjugated to the flow

φ̇ = w(ζ) of the non-perturbed system on the torus Tn × {ζ}.

5.2 Reduction to KAM theorem for one torus

We deduce Theorem 5.3 from a similar theorem concerning just one Dio-
phantine torus. We prove the latter theorem using a method analogous to
proofs of Siegel Theorem and its analogue for circle diffeomorphisms close
to rotations.

Consider a Hamiltonian system on Tn × U ⊂ Tn × Rn, 0 ∈ U , with a
Hamiltonian function of type

K0(φ, r) = c0+ < α, r > +O(r2), as r → 0. (5.4)

40



Then the torus
Tn0 := Tn × {0} ⊂ Tn × Rn

is invariant for the Hamiltonian vector field XK0 , and the corresponding
differential equation on Tn0 takes the form{

φ̇ = α

ṙ = 0.
(5.5)

In what follows we denote

Q(φ) :=
∂2K0

∂r2
(φ, 0), Q0 :=

1

(2π)n

∫
Tn
Q(φ)dφ1 . . . dφn :

Q(φ) is the Hessian matrix function, and Q0 is its average over φ, a constant
matrix. The latter matrices are symmetric, and we also deal with them as
with quadratic forms.

Theorem 5.4 (Kolmogorov – Arnold). For every collection of positive
constants c, γ, s, c∗ > 0 there exist ε0 > 0, δ(ε) > 0 such that δ(ε) → 0, as
ε→ 0, that satisfy the following statements. Let α = (α1, . . . , αn) ∈ Rn be a
(C, γ)-Diophantine vector. Let a function K0(φ, r) be as in (5.4), analytic
on

Ms := Tns ×∆s

and continuous on its closure such that

max
Ms

|K0 − c0| ≤ c∗, max{||Q0||, ||(Q0)−1||} ≤ c∗. (5.6)

Let H(φ, r) be a function analytic on Ms and continuous on M s such that

max
Ms

|H −K0| ≤ ε, ε ≤ ε0. (5.7)

Then the Hamiltonian vector field XH has an invariant torus

T n = {r = g(φ)}, g(φ) is analytic on Tn, max |g| ≤ δ(ε).

Proof of Theorem 5.3. For every ζ ∈ U with (C, γ)-Diophantine fre-
quency w(ζ) let us consider the auxiliary Hamiltonian function

Kζ(φ, r) := K(ζ + r) = K(ζ)+ < α, r > +O(r2), α = w(r).

The function Kζ(φ, r) is analytic on Ms and continuous on its closure. Its
Hessian matrix in r is non-degenerate and depends only on r. Its norm
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and the norm of its inverse are both uniformly bounded on Ms by the same
constant c∗, as the corresponding matrices for the function K(p) on UC,s.
Increasing the constant c∗ one can achieve that |Kζ(φ, r) − K(ζ)| ≤ c∗ on
Ms. Let now ε0 = ε0(C, γ, s, c∗) be the same, as in Theorem 5.4, and let
ε ∈ (0, ε0). Then the function Hζ(φ, r) := H(φ, ζ+r) is ε-close to Kζ on Ms.
Hence, it satisfies the statements of Theorem 5.4. Therefore, the Hamilto-
nian vector field XHζ has an invariant torus δ(ε)-close to the invariant torus
{r = 0} = {p = ζ} of the nonperturbed system with Hamiltonian function
Kζ . In the coordinates (φ, p) it is an invariant torus of the Hamiltonian
vector field XH . This proves Theorem 5.3 modulo Theorem 5.4. 2

Theorem 5.4 will be proved below following a proof due to J.Féjoz [2, 3].
We show that there exists an analytic symplectomorphism of the type

G : Tn × Rn → Tn × Rn, G(φ, r) = (θ(φ), (r + ρ(φ))(θ′(φ))−1), (5.8)

ρ(φ)dφ is a closed 1-form, i.e., ρ = (ρ1(φ), . . . , ρn(φ)),
∂ρi
∂φj

=
∂ρj
∂φi

,

φ 7→ θ(φ) is an analytic diffeomorphism Tn → Tn,

such that
H ◦G(φ, r) = c1+ < α, r > +O(r2), as r → 0. (5.9)

max
Tn
|G(φ, 0)− (φ, 0)| ≤ δ(ε). (5.10)

Thus, Tn0 is invariant under the Hamiltonian flow for the function H ◦ G,
and the torus

T n := G(Tn0 ) (5.11)

is invariant for the Hamiltonian vector field XH .
The proof of Theorem 5.4 presented below will be somewhat similar

to the proof of Siegel Theorem and to the proof of Kolmogorov-Arnold
theorem on analytic circle diffeomorphisms close to rotations. We find the
symplectomorphism G as an infinite composition of symplectomorphisms of
type (5.8), each obtained as a solution of the KAM analogue of homological
equation.

To prove convergence of compositions, we prove an upper bound on solu-
tion of KAM homological equation using multidimensional Cauchy bounds.
The corresponding background material is presented below. Then we prove
a preparatory upper bound on solution of a simplified homological equation.
Afterwards we prove an upper bound of solution of the KAM homological
equation. Then we prove convergence of compositions to a limit symplecto-
morphism G. Apriori bounds will imply that G is δ(ε)-close to the identity.
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5.3 Background material 1. Several complex variables. Mul-
tidimensional Cauchy formula and Taylor series

For every R = (R1, . . . , Rn) ∈ Rn+ and a = (a1, . . . , an) ∈ Cn by ∆R(a) we
denote the polydisk centered at a of multiradius R:

∆R(a) :=
n∏
j=1

DRj (aj) = {(z1, . . . , zn) | |zj − aj | < Rj}.

∆R := ∆R(0), ∆s := ∆(s,s,...,s) for every s > 0.

Recall that a function f(z1, . . . , zn) of several complex variables, defined
in a domain U ⊂ Cn, is holomorphic, if it is differentiable as a function of
2n real variables Re zj , Im zj , and its differential at every point z, which
is a R-linear functional R2n = TzCn → C is in fact a C-linear functional
Cn → C.

Theorem 5.5 (Hartogs). A function f(z1, . . . , zn) is holomorphic on a do-
main ω = ω1×· · ·×ωn ⊂ Cn, if and only if it is separately holomorphic:
for every j = 1, . . . , n and every given collection of points zs ∈ ωs, s 6= j,
the function g(z) = f(z1, . . . , zj−1, z, zj+1, . . . , zn) is holomorphic on ωj.

Remark 5.6 Separate holomorphicity obviously follows from holomorphic-
ity. The nontrivial part of the theorem says that if a function is separately
holomorphic, then it is holomorphic as a function of several variables. We
will not prove Theorem 5.5 in full generality. We will prove its weaker version
under continuity assumption (Osgood Lemma).

The next theorem generalizes Cauchy formula for holomorphic functions
in one variable.

Theorem 5.7 (Multidimensional Cauchy formula). Let f : ∆r → C be a
continuous function that is separately holomorphic on ∆r: holomorphic
in each variable zj ∈ Drj , j = 1, . . . , n. (In particular, this holds for every
function holomorphic on ∆r and continuous on its closure). Then for every
z = (z1, . . . , zn) ∈ ∆r one has

f(z) =
1

(2πi)n

∮
|ζ1|=r1

· · ·
∮
|ζn|=rn

f(ζ)∏n
j=1(ζj − zj)

dζ1 . . . dζn. (5.12)

Remark 5.8 Let g(ζ) denote the sub-integral function in the latter right-
hand side. The multiple integral in (5.12) is independent of integration
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order (Fubini’s theorem and continuity of the function g(ζ)). It is equal
to the integral of the complex-valued differential n-form g(ζ)dζ1 ∧ · · · ∧ dζn
on the n-torus Tn =

∏n
j=1 S

1
j , S1

j = {|ζj | = rj}, oriented as a product of
positively (i.e., counterclockwise) oriented circles. That is, an orienting basis
v1, . . . , vn ∈ TζTn is formed by vectors vj ∈ TζjS1

j oriented counterclockwise.

Proof It suffices to prove the statement of the theorem in the case, when f
is holomorphic in each variable on a domain containing the closed polydisk
∆r: the general case is reduced to it via scaling the function f to fε(z) =
f(εz), 0 < ε < 1 (which is holomorphic in each variable on ∆r) and passing
to the limit under the integral, as ε → 1. We prove formula (5.12) by
induction in n.

Induction base: for n = 1 this is the classical Cauchy formula for one
variable.

Induction step. Let formula (5.12) be proved for the given n = k. Let
us prove it for n = k + 1. For every w = (w1, . . . , wk) ∈ Ck set

fw(t) = f(w1, . . . , wk, t).

For every fixed zk+1 ∈ Drk+1
the function g(w1, . . . , wk) = fw(zk+1) is holo-

morphic on ∆(r1,...,rk). Hence,

f(z1, . . . , zk+1) =
1

(2πi)k

∮
|ζ1|=r1

· · ·
∮
|ζk|=rk

fζ(zk+1)∏k
j=1(ζj − zj)

dζ1 . . . dζk,

(5.13)
by the induction hypothesis. The function fζ(t) being holomorphic in t ∈
Drk+1

for every ζ = (ζ1, . . . , ζk), it is expressed by Cauchy Formula

fζ(t) =
1

2πi

∮
|ζk+1|=rk+1

fζ(ζk+1)

ζk+1 − t
dζk+1 for every t ∈ Drk+1

.

Substituting the latter formula with t = zk+1 to (5.13) yields (5.12), by
continuity and Fubini Theorem. 2

Lemma 5.9 (Osgood). Every continuous function on a domain in Cn that
is holomorphic in each individual variable is holomorphic.

Proof It sufficed to prove the statement of the lemma for a function con-
tinuous on a closed polydisk ∆r. Then Multidimensional Cauchy Formula
(5.12) holds, and its subintegral expression is a continuous family of rational
functions in z ∈ ∆r. Therefore, the subintegral expressions are holomorphic

44



on ∆r. They are uniformly bounded and continuous together with deriva-
tives on compact subsets in ∆r. Therefore, the integral is C1-smooth and
its partial derivatives are equal to the integrals of partial derivatives in z
of the subintegral expression (here one can differentiate the integral by the
above boundedness and continuity statements). This imply holomorphicity
of the Cauchy integral. 2

Theorem 5.10 Let a sequence of holomorphic functions on a domain Ω ⊂
Cn converge uniformly on compact subsets. Then its limit is holomorphic
on Ω.

Proof The Cauchy formula passes to limit and thus, holds for the limit
function. This together with the above argument implies its holomorphicity.

2

Set

Z≥0 = N ∪ {0}.

Theorem 5.11 Every function f holomorphic at 0 ∈ Cn is a sum of power
series converging to f uniformly on a neighborhood of 0:

f(z) =
∑
k∈Zn≥0

ckz
k; ck ∈ C, zk = zk11 . . . zknn , c0 = f(0), (5.14)

ck =
1

(2πi)n

∮
|ζn|=δ

· · ·
∮
|ζ1|=δ

f(ζ)

ζ−k1−1
1 . . . ζ−kn−1

n

dζ1 . . . dζn. (5.15)

Proof Fix a δ > 0 such that f is holomorphic on the closed polydisk
∆δ = ∆(δ,...,δ). Let us show that the right-hand side of the Cauchy formula
written in the same polydisk is a sum of power series converging on ∆δ. For
every ζj and zj with |zj | < δ = |ζj | one has

1

ζj − zj
= ζ−1

j

1

1− zj
ζj

=

+∞∑
l=0

ζ−l−1
j zlj . (5.16)

This series converges absolutely uniformly on every disk |zj | ≤ δ′ with δ′ < δ.
Hence, the product of the latter series for all j = 1, . . . , n also absolutely
uniformly converges to 1∏

j(ζj−zj)
on ∆δ′ . Substituting formulas (5.16) for all

j to (5.12) together with permutability of integration and series summation
(ensured by absolute uniform convergence of subintegral series and uniform
boundedness of the function on ∂∆) yields (5.14) with ck given by (5.15).
Substituting k = 0 yields c0 = f(0), by (5.12). 2
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5.4 Background material 2. Cauchy bounds

Theorem 5.12 Let f(z) be a bounded holomorphic function on a domain
U ⊂ Cn, M := supU |f |. Let a ∈ U , and let

f(z) =
∑
k∈Zn≥0

fk(z − a)k

be its Taylor series at a. Let η > 0 be such that ∆η(a) ⊂ U . Then for every
k = (k1, . . . , kn) one has

|fk| ≤
M

η|k|
, |k| :=

∑
j

|kj |. (5.17)

Proof Let us fix an arbitrary ν ∈ (0, η) and write the multidimensional
Cauchy Formula for the coefficient fk in the closed polydisk ∆ν(a) ⊂ U .
The module of the subintegral expression is no greater than M

ν|k|+n
, which

implies that |fk| ≤ M
ν|k|

. Since ν > 0 is arbitrary less than η, this yields
(5.17). 2

Corollary 5.13 Let U ⊂ Cn be a domain, and let V ⊂ U be a compact
subset. Let η > 0 be such that ∆η(a) ⊂ U for every a ∈ V . Then for f and
M as above one has

max
V
|∂
kf

∂zk
| ≤ k1! . . . kn!

M

η|k|
. (5.18)

Theorem 5.14 Let f be a bounded holomorphic function on Tns . Let us
denote M := supTns |f |. Let us write f as a Fourier series:

f(φ) =
∑
k∈Zn

fke
i<k,φ>. (5.19)

Then
|fk| ≤Me−|k|s. (5.20)

Proof One has

fk =
1

(2π)n

∫
· · ·
∫
f(φ)e−i<k,φ>dφ1 . . . dφn. (5.21)

The subintegral expression is holomorphic and 2π-periodic in each variable
φj lying in the strip {| Imφj | < s}, i.e., holomorphic in zj = eiφj lying in
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the annulus bounded by circles of radii e±s. Therefore, the above multiple
integral can be replaced by multiple integrals with integration in φj taken
along any counterclockwise oriented circle {Imφj = νj}, |νj | < s. Fix an
arbitrary ν ∈ (0, s) and set

νj := −ν sign kj for every j = 1, . . . , n.

Then along the product of the above integration circles the module of the
subintegral expression is equal to |f(φ)|e−|k|ν . Therefore, the right-hand
side in (5.21) is no greater than Me−|k|ν for arbitrary positive ν < s. This
implies (5.20). 2

5.5 Main differential equation and bound of its solution

Here we prove the following proposition, which is one of the key statements
in proofs of upper bounds of a solution of homological equation.

In what follows by As(Tn) we denote the space of functions holomorphic
on Tns and continuous on its closure. It is a Banach space with the norm

||f ||s := max
Tns
|f |.

Proposition 5.15 For every C, γ > 0 there exists a χ = χ(C, γ) > 0 sat-
isfying the following statement. Let α = (α1, . . . , αn) ∈ Rn be a (C, γ)-
Diophantine vector. Then for every function u ∈ As(Tn) with zero aver-
age, i.e., zero free term of the Fourier series, there exists a unique analytic
function h(φ) on Tn with zero average that is a solution of the differential
equation

dh

dα
= u. (5.22)

Moreover, it is holomorphic on Tns , and for every η ∈ (0, s) one has

||h||s−η ≤ χη−(γ+1)||u||s. (5.23)

Proof Let u(φ) =
∑

k 6=0 uke
i<k,φ>. The formal Fourier series solution of

(5.22) is

h(φ) =
∑
k 6=0

hke
i<k,φ>, hk =

uk
i < k, α >

,

|hk| ≤ C−1|k|γ |uk| ≤ C−1|k|γ ||u||se−|k|s,
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by Diophantine property and (5.20). Therefore, for every φ(mod2πZn) ∈
Tns−η one has∑

k 6=0

|hkei<k,φ>| ≤ C−1||u||s
∑

k∈Zn\{0}

|k|γe−|k|se|k|(s−η)

= C−1η−(γ+n)
∑

k∈Zn\{0}

|kη|γe−|k|ηηn.

The latter sum is an integral sum with step η for the function |x|γe−|x|, x ∈
Rn, whose integral converges. Therefore, the sums are uniformly bounded
as is η. This implies holomorphicity of the function h on Tns and (5.23). 2
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