Introduction to KAM theory. Spring semester 2024/2025.

Problem List 3. Introduction to symplectic geometry.

Deadline: April 30.

Problem 1. Find Hamiltonian vector fields for the following functions on the standard symplectic space \mathbb{R}^{2n} :

 $\sum_{j=1}^{n} p_j^2$, $\sum_j q_j p_j \exp(q_1 + p_2^2)$.

Problem 2. How is the Hamiltonian vector field changed if we multiply the symplectic form by a constant c?

Problem 3. Prove that two Hamiltonian vector fields commute, if and only if their Poisson bracket is constant.

Definition. A subspace L of the standard symplectic space $(\mathbb{R}^{2n}_{q,p}, \omega_{st})$ is *isotropic*, if $\omega_{st}|_L = 0$; $\omega_{st} = dq \wedge dp = \sum_{j=1}^n dq_j \wedge dp_j$.

Problem 4. Prove that the maximal dimension of an isotropic subspace L is equal to n: in this case L is called *Lagrangian*.

Problem 5. Consider an arbitrary isotropic subspace $V \subset \mathbb{R}^{rn}$. Prove that its symplectic orthogonal $V^{\perp_{\omega}}$ contains V. Prove that V is contained in a Lagrangian subspace, and each Lagrangian subspace containing V lies in V^{\perp} .

Definition 1. A *n*-dimensional global or local subvariety is called *Lagrangian*, if its tangent spaces are Lagrangian.

Problem 6. Consider a Lagrangian submanifold $S \subset U \times V \subset \mathbb{R}_q^n \times \mathbb{R}_p^n$, $\omega = dq \wedge dp$. Let S be diffeomorphically projected to the q-space U, i.e., it is the graph of a vector function p = v(q). Prove that S is Lagrangian, if and only if v is the gradient of a smooth function g:

$$v(q) = \nabla g(q) = \left(\frac{\partial g}{\partial q_1}, \dots, \frac{\partial g}{\partial q_n}\right).$$

Definition Let (M, ω) be a 2*n*-dimensional symplectic manifold. A Lagrangian fibration is a splitting of the manifold M into disjoint Lagrangian submanifolds, called *fibers*, that is a locally trivial fibration. Namelt, there exists a projection $\pi : M \to N$ without critical points onto a N-dimensional manifold such that the fibers are preimages $\pi^{-1}(q), q \in N$. Example: a foliation by invariant tori in an integrable system.

Problem 7. Consider a Lagrangian fibration $\pi: M \to N$ over a domain $N \subset \mathbb{R}^n_{q_1,\ldots,q_n}$. Prove that

a) for every function $f : N \to \mathbb{R}$ the Hamiltonian vector field with the Hamiltonian function $F = f \circ \pi$ is tangent to the Lagrangian fibers;

b) every functions $F, G: M \to \mathbb{R}$ constant on fibers are in involution: $\{F, G\} = 0$;

c) for every function $F: M \to \mathbb{R}$ constant on fibers the Hamiltonian vector field X_F is a linear combination of the Hamiltonian vector fields $X_{Q_j}, Q_j = q_j \circ \pi$, with constant coefficients.

d) Deduce that in the case, when n = 1, i.e., fibers are curves, the fibration defines a family of length elements on fibers, in which the norm $||X_Q||$ is constant on each fiber. It is uniquely defined just by the fibration in the following sense: for two different projections defining the same fibration the corresponding length elements differ by multiplication by a factor that is constant on each fiber.

d) In the general case of arbitrary n deduce that a Lagrangian fibration uniquely determines an *affine structure* on fibers. This means that each fiber is equipped with an atlas where the transition functions between charts are affine transformations; two atlaces are said to be *equivalent*, if their charts differ by taking post-compositions with affine transformations.