Алгоритм Евклида

- **AC1 \diamond1.** Найдите наибольший общий делитель нод(a,b) в кольце целых чисел $\mathbb Z$ и укажите такие целые числа x и y, что нод(a,b)=ax+by для чисел a) a=247,b=481 b) a=1575,b=2025 b) a=777777,b=7777 c) a=2870,b=5187
- **AC1\diamond2.** Найдите все решения $x, y \in \mathbb{Z}$ уравнений: **a)** 2025x + 1531y = 1 **б)** 26x + 32y = 60 **в)** nx + (2n 1)y = 3
- **AC1\diamond3.** Найдите все решения $x, y \in \mathbb{N}$ уравнения 10x + 7y = 2025
- **AC1 > 4.** Птицефабрика фасует яйца в коробки, рассчитанные либо на 12, либо на 25 яиц. Сможет ли птицефабрика отсчитать покупателю ровно 401 яйцо, используя только такие коробки? Предполагается, что в каждой коробке лежит ровно столько яиц, на сколько она рассчитана.
- **AC1\diamond5.** Для *чисел Фибоначчи* , определенных началными условими $F_0 = F_1 = 1$ и рекуррентным соотношением $F_{n+1} = F_{n-1} + F_n$, докажите, что соседние числа Фибоначчи ваимно просты и найдите какое-нибудь решение уравнения $F_{n-1}x + F_ny = 1$ в целых числах.
- **АС1 \diamond6.** Для всех $l, m, n \in \mathbb{N}, l \geqslant 2$, вычислите нод $(l^n 1, l^m 1)$.
- **AC1 \diamond7.** Разложите в бесконечную цепную (непрерывную) дробь **a)** $1+\sqrt{2}$ **б)** золотое сечение $\frac{1+\sqrt{5}}{2}$.