Евклидовы кольца

- **АЛ2** \diamond **1.** Ненулевые остатки от деления квадратов целых чисел на простое число p > 2 называют *квадратичными вычетами по модулю p*. Все другие ненулевые остатки квадратичные невычеты. Докажите что, существует (p-1)/2 квадратичных вычета и ровно столько же квадратичных невычетов по модулю p.
- **АЛ2\diamond2** (Целые гауссовы числа 1). Покажите, что $\mathbb{Z}[i] = \{a+ib|a,b\in\mathbb{Z},i^2=-1\}$ евклидово кольцо с обычными операциями сложения и умножения комплексных чисел и нормой $\|z\|=z\bar{z}$. Проверьте, что норма мультипликативна, а именно для любых $z_1,z_2\in\mathbb{Z}[i]$ верно, что $\|z_1z_2\|=\|z_1\|\|z_2\|$. Найдите все обратимые элементы в $\mathbb{Z}[i]$.
- **АЛ2\diamond3.** Покажите, что любое простое в $\mathbb{Z}[i]$ делит простое натуральное число. Какая может быть норма у простого гауссова числа?
- **АЛ2\diamond4.** Покажите, что для простого $p \in \mathbb{Z}[i]$ фактор кольцо $\mathbb{Z}[i]/(p)$ это поле. Какая характеристика этого поля? Сколько элементов в этом поле?
- **АЛ2\diamond5.** Докажите, что все простые натуральные число вида p=4k+3, где k- натуральное, остаются неприводимыми в кольце целых Гауссовых числах.
- **АЛ2\diamond6.** Покажите, что для любого простого числа p=4n+1, где $n\in\mathbb{N}$, существует такое целое число m, что m^2+1 кратно p.
- **АЛ2\diamond7.** Докажите, что простое натуральное число вида p=4n+1, где $n\in\mathbb{N}$, раскладывается в кольце целых Гауссовых чисел в произведение двух неприводимых.
- **АЛ2\diamond8.** Докажите, что натуральное число представимо в виде суммы двух квадратов целых чисел тогда и только тогда, когда все простые натуральные числа вида 4k+3 входят в его разложение на простые множетели в четной степени.
- **АЛ2** \diamond **9*** (Целые числа Эйзенштейна). Покажите, что $\mathbb{Z}[w] = \{a+wb | a, b \in \mathbb{Z}, w = \frac{1}{2}(-1+i\sqrt{3})\}$ евклидово кольцо с обычными операциями сложения и умножения комплексных чисел и нормой $\|z\| = z\bar{z}$. Проверьте, что норма мультипликативна, а именно для любых $z_1, z_2 \in \mathbb{Z}[w]$ верно, что $\|z_1z_2\| = \|z_1\|\|z_2\|$. Найдите все обратимые элементы в $\mathbb{Z}[w]$.
- **АЛ2\diamond10.** Для $w=\frac{1}{2}(-1+i\sqrt{3})\}$ найдите многочлен $F\in\mathbb{Z}[x]$ минимальной степени со старшим коэффициентом 1 такой, что F(w)=0.
- **АЛ2\diamond11***. Покажите, что любое простое в $\mathbb{Z}[w]$ делит простое натуральное число. Какая может быть норма у простого числа Эйзенштейна?
- **АЛ2** \diamond **12.** Покажите, что $\mathbb{Z}[\sqrt{2}] = \{a + \sqrt{2}b | a, b \in \mathbb{Z}\}$ евклидово кольцо с обычными операциями сложения и умножения действительных чисел и нормой $\|a + \sqrt{2}b\| = |(a + \sqrt{2}b)(a \sqrt{2}b)|$. Проверьте, что норма мультипликативна, а именно для любых $z_1, z_2 \in \mathbb{Z}[\sqrt{2}]$ верно, что $\|z_1z_2\| = \|z_1\|\|z_2\|$. Найдите обратимый элемент бесконечного порядка в $\mathbb{Z}[\sqrt{2}]$.
- **АЛ2•13.** Покажите, что $\mathbb{Z}[\sqrt{-5}] = \{a + \sqrt{-5}b | a, b \in \mathbb{Z}\}$ коммутативное кольцо с единицей с обычными операциями сложения и умножения комплексных чисел. Найдите все обратимые элементы в $\mathbb{Z}[\sqrt{-5}]$. Докажите, что в этом кольце любой элемент раскладывается в произведение неприводимых, но это разложение возможно не единственно. Приведите пример неоднозначного разложения.
- **АЛ2** \diamond **14***. Покажите, что $\mathbb{Z}[\sqrt{-3}] = \{a + \sqrt{-3}b | a, b \in \mathbb{Z}\}$ коммутативное кольцо с единицей с обычными операциями сложения и умножения комплексных чисел. Найдите все обратимые элементы в $\mathbb{Z}[\sqrt{-3}]$. Докажите, что в этом кольце любой элемент раскладывается в произведение неприводимых, но это разложение возможно не единственно. Приведите пример неоднозначного разложения.

¹http://kvant.mccme.ru/pdf/1999/03/kv0399senderov.pdf

(напишите свои имя, отчество и фамилию)

No	дата	кто принял	подпись
1			
2			
3	-		
4	-		
5	_		
6	_		
7			
8			
9			
10			
11			
12			
13			
14			