Евклидовы кольца

Определения Комплексные числа вида $a+ib\in\mathbb{C}$, где $a,b\in\mathbb{Z}$, называются *целыми гауссовыми числами* $\mathbb{Z}[i]$. Комплексные числа вида $a+bw\in\mathbb{C}$, где $a,b\in\mathbb{Z}$ и $w=\frac{1}{2}(-1+i\sqrt{3})\}$, называются *целыми числами* Эйзенштейна $\mathbb{Z}[w]$, где $w=\frac{1}{2}(-1+i\sqrt{3})\}$. Кольца целых Гауссовых чисел и целых чисел Эйзенштейна – евклидовы относительно нормы $\|z\|=z\bar{z}$.

- **AC3\diamond1.** Изобразите на комлексной плоскости \mathbb{C} **a)** $\mathbb{Z}[i]$; **б)** $\mathbb{Z}[w]$.
- AC3 > 2. Покажите, что действительно можно делить с остатком в кольцах
 - a) $\mathbb{Z}[i]$;
 - б) $\mathbb{Z}[w]$
- **AC3\diamond3.** Найдите все обратимые элементы в кольце $\mathbb{Z}[i]$.
- **AC3\diamond4.** Найдите наибольший общий делитель нод(a,b) в кольце целых гауссовых чисел и укажите такие целые числа x и y, что нод(a,b)=ax+by для чисел
 - a) a = 7 i, b = -4 + 7i;
 - **6)** a = 5 + 3i, b = 6 4i.
- **AC3\diamond5.** Докажите, что если целые числа a и b взаимно просты в \mathbb{Z} , то они взаимно просты и в $\mathbb{Z}[i]$.
- **AC3♦6.** Как на комплексной плоскости С выглядят главные идеалы:
 - **a)** $(7) \subset \mathbb{Z}[i];$
 - **6)** (2 + i) ⊂ $\mathbb{Z}[i]$;
 - **B)** $(a + ib) \subset \mathbb{Z}[i]$.
- **AC3\diamond7.** Найдите наименьшее по модулю натуральное число кратное 612 1003i в $\mathbb{Z}[i]$.
- AC3 > 8. Разложите на простые множетили в кольце целых гауссовых чисел
 - а) 2; б) 3; в) 4; г) 5.
- **AC3\diamond9.** Для каких целых гауссовых чисел главные идеалы порожденные этим числом и комплексно сопряженным к нему совпадают (a+ib)=(a-ib)?
- **AC3\diamond10.** Сколько элементов в фактор кольце $\mathbb{Z}[i]/(a+ib)$?
- **AC3\diamond11.** Докажите, что если натуральное простое число p представимо в виде суммы квадратов двух натуральных чисел, то такое представление единственно с точностью до порядка слагаемых.
- **AC3\diamond12.** Докажите, что число 5^n раскладывается в сумму двух квадратов целых чисел $[\frac{n}{2}]+1$ различными способами.
- AC3 > 13. Найдите все обратимые элементы в кольце кольце целых чисел Эйзенштейна.
- **AC3•14.** Найдите наибольший общий делитель нод(a,b) в кольце целых чисел Эйзенштейна и укажите такие целые числа Эйзенштейна x и y, что нод(a,b)=ax+by для чисел $a=7-e^{\frac{2\pi i}{3}},b=-4+7e^{\frac{2\pi i}{3}}.$
- **AC3<**15. Разложите на простые множетили 2 и 3 в кольце целых чисел Эйзенштейна.