Семинарский листок 4 МАТЕМАТИЧЕСКИЙ АНАЛИЗ-I

Ряды

1. Найдите сумму ряда или докажите, что он расходится

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
; (b) $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$; (c) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$.

- **2.** Докажите, что $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geqslant \sqrt{n}, \ \forall n \in \mathbb{N}$ и покажите, что ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ расходится $(\kappa + \infty)$.
- **3.** Докажите, что ряд $\sum_{n=1}^{\infty} \sin(nx)$ расходится для всех $x \notin \pi \mathbb{Z}$.
- 4. Исследуйте ряды на сходимость

(a)
$$\sum_{n=1}^{\infty} \frac{\sin^2 \frac{\pi n}{3}}{2^n}$$
, (b) $\sum_{n=2}^{\infty} \frac{1}{\ln^p n}$, (c) $\sum_{n=1}^{\infty} \frac{4 \arctan n + (-1)^n}{n\sqrt{n}}$,

$$(d) \ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)}}, \quad (e) \ \sum_{n=1}^{\infty} \frac{a^n}{n!}, a > 0, \quad (f) \ \sum_{n=1}^{\infty} \frac{(5+(-1)^n)^n}{7^n},$$

$$(g) \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}, \quad (h) \sum_{n=1}^{\infty} 3^n \left(\frac{n}{n+1}\right)^{n^2}, \quad (i) \sum_{n=1}^{\infty} \frac{\left(n+\frac{1}{n}\right)^n}{n^{n+\alpha}}.$$

- **5.** Исследуйте сходимость ряда $\sum_{n=2}^{\infty} \frac{1}{n \ln^{\alpha} n}$ в зависимости от параметра $\alpha \geqslant 0$.
- 6. Покажите, что

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2.$$

7. Докажите сходимость рядов

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{1789n - 1640}$$
, (b) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2 - n + 1}}$.

- **8.** На примере ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}+(-1)^{n+1}}$ покажите, что от условия монотонности в признаке Лейбница нельзя избавиться.
 - 9. Выясните, сходятся ли ряды абсолютно, условно или расходятся

(a)
$$\sum_{n=1}^{\infty} \frac{\sin n^2}{n^2}$$
, (b) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} - \ln n}$, (c) $\sum_{n=1}^{\infty} \frac{(-1)^n 2^{n^2}}{n!}$.

- **10.** Пусть дан ряд $\sum_{n=1}^{\infty} a_n$. Ряд $r_n = \sum_{k=n+1}^{\infty} a_k$ называется *хвостом (или остатком)* ряда $\sum_{n=1}^{\infty} a_n$.
 - (а) Найдите хвосты следующих рядов

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
, (ii) $\sum_{n=1}^{\infty} q^n$, $|q| < 1$.

(b) Докажите, что если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} r_n=0$. Является ли это условие также достаточным?

1