Задачи для подготовки к контрольной № 1

Ал1 • 1. Найдите все целые решения уравнений:

a)
$$2059x + 1769y = 58$$
 6) $1739x + 2701y = 74$.

 $37 = 14 \cdot 1739 - 9 \cdot 2701$, pemenne $(73t_0 + 28, -47t_0 - 18)$. OTBET: (a) HOM KO3ФФИЦИЕНТОВ 29 = -6.2059 + 7.1769, решение $(61t_0 - 12, 14 - 71t_0)$, (б) HOM KO3ФФИЦИЕНТОВ

Ал1\diamond2. Найдите все целые решения уравнения 171x + 893y + 423z = -23.

OLBET:
$$(47t_0 - 253, -162t_0 + 9t_1 + 920, 323t_0 - 19t_1 - 1840)$$
.

Ал1\diamond3. Найдите все целые решения уравнения 117x + 403y + 279z = -8.

OTBET:
$$(31t_0 + 72, 243t_0 + 9t_1 + 544, -364t_0 - 13t_1 - 816)$$
.

Ал1 > 4. Найдите наименьшее по модулю целое число с остатками 48, 53, 35 от деления на 51, 65, 43 соответственно.

OTBET: -13467.

Ал1 > 5. Найдите наименьшее по модулю целое число с остатками 60, 60, 42 от деления на 119, 143, 43 соответственно.

OTBET: -238178.

Ал1 6. Решите в $\mathbb{Z}/(799)$ уравнение $x^2 = 307$.

OTBET: $799 = 17 \cdot 47$, [307] = (1,25), (1,0) = [188], (0,1) = [-187], pemerina $(\pm 16, \pm 5) = \{475, 747, 52, 324\}$. **Ал1 • 7.** Решите в $\mathbb{Z}/(553)$ уравнение $x^2 = 183$.

OTBET: $553 = 7 \cdot 79$, [183] = (1,25), (1,0) = [-237], (0,1) = [238], pemehna $(\pm 6, \pm 5) = \{321, 153, 400, 232\}$. **Ал1 \diamond8.** Кубический полином $f \in \mathbb{Q}[x]$ принимает значения

$$f(-1) = -54$$
, $f(3) = 14$, $f(5) = 0$, $f(2) = 0$.

Найдите остаток от деления f на $x^2 + x + 1$.

OTBET:
$$f = -x^3 + 3x^2 + 18x - 40 \equiv 15x - 44$$
 (mod $x^2 + x + 1$).

Ал1 \diamond 9. Кубический полином $f \in \mathbb{Q}[x]$ принимает значения

$$f(1) = 0$$
, $f(-3) = -84$, $f(-4) = 0$, $f(5) = -108$.

Найдите остаток от деления f на $x^2 + x + 1$.

OTBET:
$$\int = -3x^3 + 3x^2 + 48x - 48 = 45x - 54$$
 (mod $x^2 + x + 1$).

Ал1\diamond10. Выясните, является ли кольцо $\mathbb{Q}[x]/(x^3-4x^2-x+1)$ полем, и найдите в нём элемент $[x^{2} + 3x - 1]^{-1}$, если таковой существует.

$$[\frac{6}{4\pi} + \frac{26}{4} + \frac{6}{6} + \frac{6}{2} + \frac{6}{2}] = t - [t - x\xi + x]$$

Ал1 \diamond 11. Выясните, является ли кольцо $\mathbb{Q}[x]/(x^3-3x^2-3x+1)$ полем, и найдите в нём элемент $[x^2 + 2x + 4]^{-1}$, если таковой существует.

$$\operatorname{TKYAR} \left[x^2 + 2x + 4 \right]^{-1} = \left[\frac{x^2}{117} - \frac{10x}{117} + \frac{28}{117} \right].$$

 $\text{OTBET: Hom}(x^3 - 3x^2 - 3x + 1, x^2 + 2x + 4) = 1 = (x^3 - 3x^2 - 3x + 1) \cdot (\frac{5}{711} - \frac{10x}{711}) \cdot (x^2 + 2x + 4) = 1 = (x^3 - 2x^2 - 3x + 1) \cdot (\frac{5}{711} - \frac{10x}{711}) \cdot (x^2 + 2x + 4) = 1 = (x^3 - 2x^2 - 3x + 4) = (x^3 - 2x^2 - 3x + 4) \cdot (x^3 - 2x^2 - 3x + 4) \cdot (x^3 - 2x^2 - 3x + 4) = (x^3 - 2x^2 - 3x + 4) \cdot (x^3 - 2x^2 - 2x + 4) \cdot (x^3 - 2x + 4)$

Ал1\diamond12. Разложите на простые множители в $\mathbb{Z}[i]$: а) 7344 б) 1368 в) 870 г) 2511.

B (T) 34 · 31.

OTBET: B (a) $(1+i)^4 \cdot (1-i)^4 \cdot 3^3 \cdot (4+i) \cdot (4-i)^4 \cdot 3^5 \cdot (4+i) \cdot (4-i)^3 \cdot 3^2 \cdot 19$, B (b) $(1+i)^4 \cdot (1-i)^4 \cdot 3^5 \cdot (4+i) \cdot (4-i)^3 \cdot ($

- **Ал1 > 13.** Сколькими существенно разными способами (т. е. не получающимися один из другого перестановкой слагаемых) следующие числа могут быть представлены в виде суммы квадратов двух целых чисел?
 - а) 2^n б) 3^n в) 5^n г) 331776 д) 142129 е) 7532837 ж) 278793216
 - **з)** 5601060000 **и)** 945928125.
- '7 (и) в '5 ((ε) в '0 (ж) в '6 (ә) в 't (в) в "д (в)

OTBET: HOA(4 + 7i, 11 + 16i) = 3 + 2i.