- **Задача 1.** На проективной плоскости даны три различные прямые l_1 , l_2 и m. Как выбрать на l_1 три различные точки A, B и C и соответственно точки A', B' и C' на l_2 так, чтобы прямая Паппа, построенная по этим точкам в соответствии с теоремой Паппа, совпала с прямой m.
- Задача 2. Докажите совпадение уже известного нам определения двойного отношения (ABCD) четырех различных точек $A,\ B,\ C,\ D$ на проективной прямой \mathbb{P}^1 со следующим определением. Пусть на \mathbb{P}^1 выбрана какая-нибудь система координат, в которой $A=(1:0),\ B=(0:1).$ Пусть в этой системе координат $C=(x_1:x_2),\ D=(x_3:x_4).$ Положим $\lambda=x_2/x_1,\ \mu=x_4/x_3.$ Тогда полагаем $(ABCD)=\frac{\lambda}{\mu}.$
- **Задача 3.** Докажите, что двойное отношение сохраняется при проективных отображениях, т.е. если $f: \mathbb{P}^1 \to \mathbb{P}'^1$ проективное отображение и A, B, C, D четыре различные точки на \mathbb{P}^1 , то (ABCD) = (f(A)f(B)f(C)f(D)).
- Задача 4. Пусть основное поле есть $\mathbb C$. Пусть $\lambda=(ABCD)$ двойное отношение 4 точек, из которого перестановками этих точек получаются, включая λ , 6 чисел λ , $\frac{1}{\lambda}$, $1-\lambda$, $\frac{\lambda-1}{\lambda}$, $\frac{\lambda}{\lambda-1}$, $\frac{1}{1-\lambda}$. Нам уже известны такие числа λ , для которого не все из указанных 6 чисел различны, это числа $\lambda=-1,2$ и $\frac{1}{2}$. Существуют ли другие значения λ , для которых также не все из указанных 6 чисел различны? Если да, то найдите эти значения.
- Задача 5. Пусть A и B две различные точки на проективной прямой. Докажите, что для любой точки C, отличной от A и B, существует единственная точки C' такая, что (A,B,C,C')=-1, и что сопоставление точке C точки C' является действием проективной инволюции, а именно, единственной проективной инволюции c неподвижными точками c и c двойное отношение c неподвижными точками c и c двойное отношение c для любой точки c отличной от c и c и c неподвижными точками c и c двойное отношение c отличной от c и c и c неподвижными точками c и c двойное отношение c отличной от c и c неподвижными точками c и c двойное отношение c отличной от c и c неподвижными точками c неподвижными c неподвижными c неподвижными c неподвижными c неподвижными c