- Задача 1. Два треугольника ABC и A'B'C' на проективной плоскости называются перспективными, если прямые AA', BB' и CC' пересекаются в одной точке. Пусть треугольники ABC и A'B'C' перспективны. Обозначим точки пересечения соответственных прямых этих треугольников: $M = AB \cap A'B'$, $N = BC \cap B'C'$, $P = AC \cap A'C'$. Докажите теорему Дезарга, которая утверждает, что точки M, N и P коллинеарны. Сформулируйте обратную теорему Дезарга.
- **Задача 2.** На проективной плоскости \mathbb{P}^2 дан полный 4-вершинник PQRS. Рассмотрим точки $A=PQ\cap RS$ и $B=QR\cap PS$, и на проективной прямой $\mathbb{P}^1=AB$ рассмотрим точки $C=\mathbb{P}^1\cap QS$ и $D=\mathbb{P}^1\cap PR$. Говорят, что пара точек CD *гармонически делит* пару точек AB, и обозначается это так: $AB\stackrel{h}{-}CD$. Можно показать, что если $AB\stackrel{h}{-}CD$, то $CD\stackrel{h}{-}AB$.
- 1) Пусть $AB \stackrel{h}{-} CD$. Проверьте, что (ABCD) = -1.
- 2) Докажите, что если для точек A, B, C, построеннных выше с помощью 4-вершинника $\square = PQRS$, заменить этот 4-вершинник на новый 4-вершинник $\square' = P'Q'R'S'$, дающий ту же тройку точек A, B, C, то оба 4-вершинника \square и \square' дают одну и ту же точку D в качестве четвертой точки.
- **Задача 3.** Даны две различные проективные прямые l_1 и l_2 в проективной плоскости, пересекающиеся в точке S, и пусть даны различные точки $A,B,C\in l_1$ и $A',B',C'\in l_2$, отличные от S. Докажите теорему Паппа, утверждающую, что точки $M=AB'\cap A'B,\,N=AC'\cap A'C$ и $P=BC'\cap B'C$ коллинеарны. (Прямая MN называется npsmoй $\Pi anna$.)
- Задача 4. Даны две различные проективные прямые l_1 и l_2 в проективной плоскости, пересекающиеся в точке S, и дано проективное отображение $F: l_1 \xrightarrow{\sim} l_2$ такое, что $F(S) \neq S$. Пусть p прямая Паппа, построенная по точкам $A,B,C \in l_1$ и точкам $f(A),f(B),f(C) \in l_2$. Покажите, что прямая Паппа p не зависит от выбора точек $A,B,C \in l_1$, а зависит только от отображения f. Как ее построить, зная только отображение f и не привлекая точек $A,B,C \in l_1$ и точек $f(A),f(B),f(C) \in l_2$.