- **Задача 1.** Дана проективная плоскость \mathbb{P}^2 и двойственная ей проективная плоскость $\check{\mathbb{P}}^2$. Пусть A, B и l две различные точки и прямая в \mathbb{P}^2 , а \check{A}, \check{B} и \check{l} двойственные им две прямые и точка в $\check{\mathbb{P}}^2$.
- 1) Докажите свойство инциденции: если $A \in l$, то $\check{A} \supset \check{l}$, и обратно.
- 2) Докажите, что если l = AB, то $\check{l} = \check{A} \cap \check{B}$, и обратно.
- 3) Пользуясь свойствами 1) и 2), сформулируйте в $\check{\mathbb{P}}^2$ теорему, двойственную к теореме Дезарга и теорему, двойственную обратной к ней. Какие теоремы вы получили в двойственной плоскости?
- **Задача 2.** Пусть коника по Штейнеру **D** получена из двух пучков прямых \check{A} и \check{B} , между которыми как прямыми в $\check{\mathbb{P}}^2$ задано проективное отображение $f: \check{A} \to \check{B}$. Пусть это отображение f является перспективным обображением с центром $S \in \check{\mathbb{P}}^2$. Что собой в этом случае представляет коника **D**?
- Задача 3. Пусть коника **D** по Штейнеру построена по проективному соответствию $f: \check{A} \xrightarrow{\simeq} \check{B}$ между пучками прямых с центрами в точках A и B на конике **D** такому, что $f(AB) \neq AB$. Добавим к A и B еще 4 точки C, A_1, B_1, C_1 такие, что все 6 точек A, B, C, A_1, B_1, C_1 различны. Докажите теорему Паскаля, утверждающую, что точки $M = AB_1 \cap BA_1, \ N = AC_1 \cap CA_1$ и $P = BC_1 \cap CB_1$ коллинеарны.

(Указание: Воспользоваться идеей доказательства теоремы Паппа.)

- **Задача 4.** Докажите, что если A_1 и B_1 две различные фиксированные точки на конике **D**, построенной по Штейнеру посредством проективного соответствия между двумя пучками прямых с центрами A и B на **D**, отличными от A_1 и B_1 , то отображение $f: \check{A}_1 \to \check{B}_1: A_1X \mapsto B_1X, X \in \mathbf{D}$, является проективным. (Тем самым, коника **D** получается по Штейнеру из двух проективно соответственных пучков прямых с центрами в любых двух различных точках на **D**. Как следствие, теорема Паскаля верна для любых 6 различных точек A, B, C, A_1, B_1, C_1 на **D**.)
- **Задача 5.** Пользуясь произволом в выборе проективных координат $(x_0: x_1: x_2)$ на плоскости \mathbb{P}^2 , а также в выборе проективного соответствия между пучками прямых, посредством которых построена коника по Штейнеру \mathcal{C} , найдите уравнение коники \mathcal{C} .