Задачи к курсу

"Введение в алгебраическую топологию"

С. К. Ландо

11 ноября 2025 г. Лекции 6-7

1. Пусть $f:S^1\to\mathbb{R}$ — тригонометрический многочлен, т.е. линейная комбинация конечного числа функций вида $\sin kx,\cos mx$, где x — стандартная координата на окружности, k,m — целые неотрицательные числа. Докажите, что цепочка векторных пространств и линейных отображений

$$0 \longrightarrow \{p(x)e^{f(x)}\} \longrightarrow \{p(x)e^{f(x)}dx\} \longrightarrow 0,$$

где p(x) — тригонометрические многочлены $p:S^1\to\mathbb{R},$ а среднее отображение это взятие дифференциала, является цепным комплексом.

2. Найдите гомологии цепного комплекса

$$0 \longrightarrow \{p(x)e^{f(x)}\} \longrightarrow \{p(x)e^{f(x)}dx\} \longrightarrow 0,$$

где $f, p : \mathbb{R} \to \mathbb{R}$ — многочлены, в случаях а) $f(x) = x^3 - x$; б) $f(x) = x^4$.

- 3. Постройте симплициальное разбиение произведения $\Delta^k \times \Delta^m$ k-мерного и m-мерного симплекса, вершинами которого являются произведения 0-мерных симплексов в Δ^k и Δ^m . Сколько симплексов размерности k+m оно содержит?
- 4. Вычислите гомологии цепного комплекса абелевых групп

$$0 \longrightarrow C_1 = \mathbb{Z}_p \longrightarrow C_0 = \mathbb{Z} \longrightarrow 0,$$

где p — положительное целое число, $p \ge 2$, и средний гомоморфизм представляет собой умножение на q по модулю p, в случаях, когда а) p и q взаимно просты; б) q = p; в) p и q не взаимно просты, но q < p.

- 5. Докажите, что у неориентируемого псевдомногообразия имеется двулистное накрытие ориентируемым псевдомногообразием.
- 6. Докажите, что степень конечнократного накрытия $f: X \to Y$ ориентируемой двумерной поверхности Y совпадает со степенью d_f , определенной отображением фундаментального класса $f_*: [X] \mapsto d_f \cdot [Y]$.

- 7. Пусть $f: X \to \mathbb{C}P^1$ рациональная функция на гладкой компактной римановой поверхности X, рассматриваемая как непрерывное отображение в двумерную сферу $S^2 \cong \mathbb{C}P^1$. Введем на X и S^2 ориентацию, индуцированную комплексной структурой. Докажите, что степень отображения f совпадает с количеством прообразов у общей точки сферы.
- 8. Найдите коммутатор и коммутант фундаментальной группы проективной плоскости и бутылки Клейна.
- 9. Найдите коммутатор и коммутант фундаментальной группы дополнения к торическому узлу T(p,q) в S^3 , p и q взаимно просты.
- 10. Докажите, что первые гомологии неориентированного псевдомногообразия с коэффициентами в \mathbb{Z} изоморфны подгруппе индекса 2 в группе первых гомологий с коэффициентами в \mathbb{Z} двулистного ориентирующего накрытия этого псевдомногообразия.
- 11. Вычислите гомологии неориентируемой поверхности рода g с коэффициентами в $\mathbb{R}, \mathbb{Z}, \mathbb{Z}_2$.
- 12. Вычислите гомологии вещественного проективного пространства $\mathbb{R}P^3$ с коэффициентами в $\mathbb{R}, \mathbb{Z}, \mathbb{Z}_2$.