Многочлены

АЛЗ\diamond1. Покажите, что если несократимая дробь $\frac{p}{q} \in \mathbb{Q}$ является корнем многочлена

$$f(x) = \sum_{k=0}^{n} a_k x^k \in \mathbb{Z}[x],$$

тогда:

а) $p \mid a_0$, б) $q \mid a_n$, в) $(p - mq) \mid f(m)$ для всех $m \in \mathbb{Z}$.

АЛЗ\diamond2. Покажите, что $P \in \mathbb{Z}[x]$ не может иметь целых корней, если P(0) и P(1) нечетные.

АЛЗ\diamond3. Докажите, что неприводимый над $\mathbb Q$ многочлен не имеет кратных комплексных корней.

АЛЗ\diamond4. Докажите, что приводимый над $\mathbb Q$ многочлен с целыми коэффициентами расскладывается в произведение двух многочленов с целыми коэффициентами. При этом степень каждого многочлена меньше чем степень самомго многочлена.

АЛЗ\diamond5 (Признак неприводимости Эйзенштейна). Докажите, что если для многочлена $f \in \mathbb{Z}[x]$ существует простое $p \in \mathbb{Z}$ такое, что

- старший коэффициент f не делится на p,
- все остальные коэффициенты f делятся на p,
- свободный член f не делится на p^2 ,

тогда многочлен f неприводим над \mathbb{Q} .

АЛЗ 6. Докажите, что

$$\Phi_p = x^{p-1} + x^{p-2} + \dots + x + 1$$

неприводимый над $\mathbb Q$ многочлен, если p - простое.

АЛЗ\diamond7. Докажите, что над полем нулевой характеристики \Bbbk многочлен $P \in \Bbbk[x]$ делится на свою производную тогда и только тогда, когда $P = a(x - x_0)^n$.

АЛЗ 8. Покажите, что многочлен $x^{3n} + x^{3m+1} + x^{3l+2}$ делится на $x^2 + x + 1$.

АЛЗ\diamond9. Докажите, что многочлен $f \in \mathbb{C}[x]_{< n}$, принимающий целые значения в n последовательных целых точках, принимает целые значения во всех целых точках.

АЛЗ\diamond10. Докажите, что если \mathbb{F}_q — поле из q элементов, то $x^q-x=\prod_{a\in\mathbb{F}_q}(x-a)$

No	дата	кто принял	подпись
1a			
б			
В			
2			
3			
4			
5			
6			
7			
8			
9			
10			