Во всех задачах основное поле считается алгебраически замкнутым полем характеристики 0.

Задача 1. Пусть S и l — точка и прямая в плоскости \mathbb{P}^2 , причем $S \not\in l$. Пусть a, b, c, d — четыре различные прямые в \mathbb{P}^2 через точку S, пересекающие прямую l в точках A, B, C, D соответственно. В двойственной плоскости $\check{\mathbb{P}}^2$ прямым a, b, c, d соответствуют точки $\check{a}, \check{b}, \check{c}, \check{d}$ на прямой \check{S} . Докажите равенство двойных отношений $(\check{a}\check{b}\check{c}\check{d}) = (ABCD)$. Двойное отношение (ABCD) называется dsoùhum отношением (abcd) прямых a, b, c, d пучка через точку S. Как видим, оно не зависит от выбора прямой l в \mathbb{P}^2 .

Задача 2. Пусть A и B — две различные точки плоскости \mathbb{P}^2 , и коника по Штейнеру X получена из проективного отображения $f: \check{A} \to \check{B}$, где \check{A} и \check{B} — пучки прямых, проходящих, соответственно, через точки A и B. Покажите, что если $f(AB) \neq AB$ (в этом случае коника C называется $hebipocedehnoй коникой по Штейнеру), то любая прямая <math>l \subset \mathbb{P}^2$ пересекает X в одной или двух точках. В частности, коника X не содержит прямой.

Задача 3. Назовем касательной прямой в точке $x \in X$ к невырожденной конике X по Штейнеру такую прямую l в плоскости, которая имеет с X единственную общую точку x. В условиях задачи 1 докажите, что если невырожденная коника по Штейнеру X получается посредством проективного отображения $f: \check{A} \to \check{B}$, то прямые l = f(AB) и $m = f^{-1}(BA)$ - касательные к конике X в точках A и B соответственно.

Задача 4. Пусть C – невырожденная коника по Штейнеру, и O – произвольная точка вне C. Проведем три произвольные прямые $l,\ m,\ n$ через точку O, пересекающие конику C в точках X и $X_1,\ Y$ и $Y_1,\ Z$ и Z_1 соответственно, как показано на рисунке ниже. Тогда по теореме Дезарга точки

$$S = (Y_1 Z_1) \cap (Y Z), \quad S' = (X Z_1) \cap (X_1 Z), \quad S'' = (X Y_1) \cap (X_1 Y),$$

лежат на одной прямой, которую мы обозначим через \mathbf{p}_O . Докажите, что прямая \mathbf{p}_O не зависит от выбора вписанных в конику C перспективных треугольников XY_1Z_1 и X_1YZ , для которых она является осью Дезарга. Она называется полярой точки O относительно коники C. Полярой точки O на невырожеденной конике Штейнера C по определению называется касательная прямая к конике C в точке O.

Задача 5. В условиях предыдущей задачи докажите, что произвольная прямая l через точку $O \not\in C$, пересекающая конику C в двух различных точках A и B, пересекает поляру \mathbf{p}_O в точке P такой, что пара точек OP гармонически делит пару точек AB.