Семинар 10

Линейные операторы 3

Характеристический многочлен. Инвариантные подпространства. Теорема Гамильтона-Кэли

- 1. Следом trA линейного оператора A называется след его матрицы в любом базисе. Проверить корректность этого определения.
- 2. Пусть $\chi(t)=t^n-a_1t^{n-1}+\dots(-1)^n\det A$ характеристический многочлен оператора A. Доказать, что $a_1={\rm tr} A$.
- 3. Характеристический многочлен оператора A в пространстве V делится на характеристический многочлен ограничения оператора A на любое A-инвариантное подпространство. Доказать. (точнее: характеристический многочлен оператора A раскладывается в произведение характеристического многочлена ограничения оператора A на A-инвариантное подпространство W и характеристического многочлена фактор-оператора A на фактор-пространстве V/W).
- 4. Найти число инвариантных подпространств оператора дифференцирования в пространстве многочленов степени < n.
- 5. Доказать, что операторы, сохраняющие подпространство W < V, образуют подалгебру алгебры $\operatorname{Hom}(V,V)$. Найти размерность этой подалгебры.
- 6. Доказать, что для любого многочлена $P(X) \in F[X]$ подпространства $\operatorname{Ker} P(A)$ и $\operatorname{Im} P(A)$ А-инвариантны.
- 7. Если операторы A и B коммутируют, то подпространства $\mathrm{Ker}A$, $\mathrm{Im}A$ и все собственные подпространства оператора A инвариантны относительно оператора B. Доказать.
 - 8. Проверить теорему Гамильтона-Кэли для матриц второго порядка.
- 9. Пусть A линейный оператор, а w-вектор из V. Через $\langle w, A \rangle$ обозначим линейную оболочку векторов $\langle w, Aw, A^2w, \ldots \rangle$. Доказать, что подпространство $\langle w, A \rangle$ инвариантно относительно оператора A. Привести пример оператора и его инвариантного подпространства, отличного от подпространства вида $\langle w, A \rangle$.
- 10^* . Пусть многочлен $P(X) \in F[X]$ аннулирует оператор A. Если $P(X) = P_1(X)P_2(X)$, то $V = \mathrm{Ker} P_1(A) + \mathrm{Ker} P_2(A)$. Доказать.