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Sparsification — from millions of
parameters to thousands

Compression as a Quadratic Optimization

From floating point to fixed point



Sparsification of DL models
Variational Dropout

Variational Dropout Sparsifies Deep Neural Networks (Dmitry Molchanov et al.) ICML 2017

1. Variational Lower Bound:
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Sparsification of DL models

Variational Dropout Sparsifies Deep Neural Networks (Dmitry Molchanov et al.) ICML 2017
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https://github.com/ars-ashuha/variational-dropout-sparsifies-dnn



Sparsification of DL models
Pros and Cons of Variational Dropout

Pros: reduce from millions of parameters to
tens of thousands.

Cons:

1. Unpredictable final performance. Fine

tuning with turned off Dropout is required.

2. Sensitive to regularizer weight. High risk of Last layer MSE L
under/over compression. — alid

0.0316227766017 -

3. Has to be adapted to nonstandard layers.

MSE

4. Prior is very strong, hence
a) Good for compression;
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b) Bad for performance.
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Sparsification of DL models
Optimal Brain Surgeon

Optimal Brain Surgeon: Extensions and performance comparisons
(Babak Hassibi et al.) Advances in neural information processing systems. 1994
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The Hessian can be estimated as a covariance matrix of the stochastic gradients (it is due
to the Fisher Information properties of the Maximum Likelihood estimation).



Sparsification of DL models
Optimal Brain Surgeon as a Quadratic Programming

5 (w—wW)TH (w—wW) = min
wrt constraints(w) = 0

a) Sparsification constraints:
keep predefined percentage of
nonzero parameters. Here we
reduce from tens of thousands
of parameters to thousands.

b) Switch from floating point to
the fixed point arithmetic (p, k).
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Sparsification of DL models
From floating point to fixed

Can we reduce a fixed point
approximation to one of the
standard optimization problem?
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One possible way is to consider

the rounding error accumulation
process as a stochastic process

on the graph.

Bit Efficient Quantization for Deep Neural Networks (P Nayak et. al.) 2019
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Histogram of weight distribution of ResNet Layers for bit

precisions and approaches.
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We reduce from millions
of parameters to thousands

Our goal is hundreds

For any gquestions:

doroshin.danila@huawei.com



