# Mathematics of Multi-Antenna Transmission in 5G networks

Danila Zaev

zaev.danila1@huawei.com

Huawei

Mathematical Modelling & Optimization Lab MRC Wireless Solution Team





#### Single antenna transmission

#### **Massive MIMO transmission – key 5G technology**





- Evolution due to efficient resource utilization
- More sophisticated transmission requires cutting-edge mathematical methods

#### Source of

- Non-convex optimization problems
- Combinatorial optimization problems
- Stochastic optimization problems
- Dynamic control problems

#### Single antenna transmission



#### Multi antenna transmission



n – number of transmitting antennas

 $w_k^1$ - "weight" of the symbol at antenna

Symbol  $x_1$  is multiplied by  $w_k^1$  and then transmitted from k-th antenna

 $w^{1} = \begin{pmatrix} w_{1}^{1} \\ \vdots \\ w_{n}^{1} \end{pmatrix} \text{-- precoding vector}$  $w^{1} \in \mathbb{C}^{n},$  $||w^{1}||_{L^{2}}^{2} = p,$ 

$$y_1 = (h_{11} \dots h_{1n}) \cdot \begin{pmatrix} w_1^1 \\ \vdots \\ w_n^1 \end{pmatrix} \cdot x_1 + noise$$

$$SINR_1 = \frac{\left|\left\langle h_1, w^{1^*} \right\rangle\right|^2}{\delta^2}$$



#### Multi antenna transmission



n – number of transmitting antennas

 $w_k^1$  – "weight" of the symbol at antenna

Symbol  $x_1$  is multiplied by  $w_k^1$  and then transmitted from k-th antenna

 $w^{1} = \begin{pmatrix} w_{1}^{1} \\ \vdots \\ w_{n}^{1} \end{pmatrix} \text{-- precoding vector}$  $w^{1} \in \mathbb{C}^{n},$  $||w^{1}||_{L^{2}}^{2} = p,$ 

$$y_{1} = (h_{11} \dots h_{1n}) \cdot \begin{pmatrix} w_{1}^{1} \\ \vdots \\ w_{n}^{1} \end{pmatrix} \cdot x_{1} + noise$$

$$SINR_1 = \frac{\left|\left\langle h_1, w^{1^*} \right\rangle\right|^2}{\delta^2}$$

Which **precoding vector**  $w^1$  maximizes *SINR* for user with channel  $h_1$ ? **Answer:**  $w_{opt}^1 = c \cdot h_1^*$ 

# Multi-user transmission



Transmit two symbols to two different users simultaneously

**Channel matrix** 

$$y_{1} = (h_{11} \dots h_{1n}) \cdot \left( \begin{pmatrix} w_{1}^{1} \\ \vdots \\ w_{n}^{1} \end{pmatrix} \cdot x_{1} + \begin{pmatrix} w_{1}^{2} \\ \vdots \\ w_{n}^{2} \end{pmatrix} \cdot x_{2} \right) + noise_{1} \qquad w^{k} = \begin{pmatrix} w_{1}^{k} \\ \vdots \\ w_{n}^{k} \end{pmatrix}$$
$$y_{2} = (h_{21} \dots h_{2n}) \cdot \left( \begin{pmatrix} w_{1}^{1} \\ \vdots \\ w_{n}^{1} \end{pmatrix} \cdot x_{1} + \begin{pmatrix} w_{1}^{2} \\ \vdots \\ w_{n}^{2} \end{pmatrix} \cdot x_{2} \right) + noise_{2} \qquad ||\Sigma_{k} w^{k}||_{L^{2}}^{2} = p,$$
$$y = H \cdot W \cdot x + noise$$

$$SINR_{1}(W) = \frac{\left|\left\langle h_{1}, w^{1^{*}} \right\rangle\right|^{2}}{\left|\left\langle h_{1}, w^{2^{*}} \right\rangle\right|^{2} + \delta_{1}^{2}}$$

$$SINR_{2}(W) = \frac{\left|\left\langle h_{2}, w^{2^{*}} \right\rangle\right|^{2}}{\left|\left\langle h_{2}, w^{1^{*}} \right\rangle\right|^{2} + \delta_{2}^{2}}$$

Precoding matrix  
How to choose precoding matrix?  
Maximizing weighted sum of spectral efficiency:  
$$\sum_{k \in U} \alpha_k \cdot \log(1 + SINR_k) \rightarrow \max_W$$

#### Multi-user beamforming

$$\sum_{u \in U} \alpha_u \cdot \log(1 + SINR_u(W)) \to \max_W$$

$$SINR_{k}(W) = \frac{\left|\left\langle h_{k}, W^{k^{*}}\right\rangle\right|^{2}}{\left|\left\langle h_{k}, W^{l^{*}}\right\rangle\right|^{2} + \delta_{1}^{2}}$$





ZF beam orthogonal to all other users channel vectors:

$$w_{ZF}^k \in < h_1, \dots, h_{k-1}, h_{k+1}, \dots, h_n >^{\perp}$$

 $w_{ZF}^k$  maximizes  $\left|\left\langle h_k, w_{ZF}^k \right|^2$  in this subspace

 $W_{ZF}$  is a pseudo-inverse matrix to *H*:  $W_{TF} = H^* \cdot (HH^*)^{-1}$ 

$$W_{\rm ZF} = H^* \cdot (HH^*)^{-1}$$

#### **Multi-user pairing**

Not necessary to transmit to all active users A



Joint user selection and beamforming?

## **Multi-stream transmission**



**MIMO Streams** 

# **Channel Reconstruction**

If we know channel matrix, we may speed up transmission several times:

![](_page_10_Picture_2.jpeg)

**TDD: Uplink Measurement for Downlink Beamforming** 

![](_page_10_Figure_4.jpeg)

![](_page_10_Figure_5.jpeg)

FDD: Downlink Measurement and/or Channel Reconstruction

![](_page_10_Figure_7.jpeg)

![](_page_11_Figure_0.jpeg)

# **Uplink Equalization Problem**

![](_page_12_Figure_1.jpeg)

### **Beamforming problem**

- Non-convex optimization
- Complex analysis
- Probability theory

![](_page_13_Picture_4.jpeg)

![](_page_13_Figure_5.jpeg)

#### **Equalization problem**

- Statistical estimations
- Probability theory
- Statistical physics

![](_page_13_Figure_10.jpeg)

![](_page_13_Figure_11.jpeg)

#### Multi-stream transmission problem

- Information theory
- Computational linear algebra
- Probability theory

#### User pairing problem

- Combinatorial optimization
- Submodular optimization
- Graph theory

![](_page_13_Picture_20.jpeg)

![](_page_13_Picture_21.jpeg)

# **Channel Reconstruction problem**

- Non-convex optimization
- Complex analysis
- Stochastic process

![](_page_14_Picture_0.jpeg)

# My email: zaev.danila1@huawei.com