The prediction of Manin-Batyrev-Peyre on the number of rational points of algebraic varieties

Ratko Darda

University of Paris

March 3, 2021

Ratko Darda (University of Paris) The prediction of Manin-Batyrev-Peyre on the

March 3, 2021 1 / 19

Geometric invariants and rational points

Geometric invariants and rational points

e Heights

- 一司

- Geometric invariants and rational points
- e Heights
- Onjecture

- Geometric invariants and rational points
- e Heights
- Onjecture
- Refined conjecture

- Geometric invariants and rational points
- eights
- Onjecture
- Refined conjecture
- Idea of the proof for toric varieties

- Geometric invariants and rational points
- eights
- Onjecture
- Refined conjecture
- Idea of the proof for toric varieties
- In the second second

Geometric invariants and rational points

We work over field $\mathbb{Q}.$

We work over field \mathbb{Q} . Let X be an algebraic variety over \mathbb{Q}

```
We work over field \mathbb{Q}.
Let X be an algebraic variety over \mathbb{Q}
Suppose dim(X) = 1.
Let g be its genus.
```

```
• g > 1
```

• $g > 1 \implies$ by Faltings theorem $X(\mathbb{Q})$ is finite.

- $g > 1 \implies$ by Faltings theorem $X(\mathbb{Q})$ is finite.
- g = 1

- $g > 1 \implies$ by Faltings theorem $X(\mathbb{Q})$ is finite.
- $g = 1 \implies X$ is an elliptic curve $X(\mathbb{Q})$ is an abelian finitely generated group.

- $g > 1 \implies$ by Faltings theorem $X(\mathbb{Q})$ is finite.
- $g = 1 \implies X$ is an elliptic curve $X(\mathbb{Q})$ is an abelian finitely generated group.
- g = 0

- $g > 1 \implies$ by Faltings theorem $X(\mathbb{Q})$ is finite.
- $g = 1 \implies X$ is an elliptic curve $X(\mathbb{Q})$ is an abelian finitely generated group.
- $g = 0 \implies$ if $X(\mathbb{Q}) \neq \emptyset$, then $X = \mathbb{P}^1$, the rational points $X(\mathbb{Q})$ are Zariski dense.

- $g > 1 \implies$ by Faltings theorem $X(\mathbb{Q})$ is finite.
- $g = 1 \implies X$ is an elliptic curve $X(\mathbb{Q})$ is an abelian finitely generated group.
- $g = 0 \implies$ if $X(\mathbb{Q}) \neq \emptyset$, then $X = \mathbb{P}^1$, the rational points $X(\mathbb{Q})$ are Zariski dense.

When dim(X) > 1 the condition g = 0 is replaced by $K_X^{-1} = \wedge^{\text{top}} T_X$ is ample.

• Heights measure arithmetic complexity of a rational point on a variety.

- Heights measure arithmetic complexity of a rational point on a variety.
- Let $\mathbf{x} \in \mathbb{P}^n(\mathbb{Q})$.

- Heights measure arithmetic complexity of a rational point on a variety.
- Let x ∈ Pⁿ(Q).One has homogenous coordinates
 x = [x₀ : x₁ : · · · : x_n].

- Heights measure arithmetic complexity of a rational point on a variety.
- Let $\mathbf{x} \in \mathbb{P}^n(\mathbb{Q})$.One has homogenous coordinates $\mathbf{x} = [x_0 : x_1 : \cdots : x_n]$.Moreover, one can take $x_i \in \mathbb{Z}$

- Heights measure arithmetic complexity of a rational point on a variety.
- Let x ∈ Pⁿ(Q).One has homogenous coordinates
 x = [x₀ : x₁ : · · · : x_n].Moreover, one can take x_i ∈ Zand gcd(x_i) = 1.

- Heights measure arithmetic complexity of a rational point on a variety.
- Let x ∈ Pⁿ(Q).One has homogenous coordinates
 x = [x₀ : x₁ : · · · : x_n].Moreover, one can take x_i ∈ Zand gcd(x_i) = 1. One sets H(x) := max_i(|x_i|).

- Heights measure arithmetic complexity of a rational point on a variety.
- Let x ∈ Pⁿ(Q).One has homogenous coordinates
 x = [x₀ : x₁ : · · · : x_n].Moreover, one can take x_i ∈ Zand gcd(x_i) = 1. One sets H(x) := max_j(|x_j|).
- Northcott property: Number of points of height at most B, is finite (it is bounded by (2B + 1)ⁿ⁺¹).

- Heights measure arithmetic complexity of a rational point on a variety.
- Let x ∈ Pⁿ(Q).One has homogenous coordinates
 x = [x₀ : x₁ : · · · : x_n].Moreover, one can take x_i ∈ Zand gcd(x_i) = 1. One sets H(x) := max_j(|x_j|).
- Northcott property: Number of points of height at most B, is finite (it is bounded by (2B+1)ⁿ⁺¹).
- Manin conjecture predicts the asymptotic behaviour of the number of rational points of the height at most *B*.

- Heights measure arithmetic complexity of a rational point on a variety.
- Let x ∈ Pⁿ(Q).One has homogenous coordinates x = [x₀ : x₁ : · · · : x_n].Moreover, one can take x_i ∈ Zand gcd(x_i) = 1. One sets H(x) := max_j(|x_j|).
- Northcott property: Number of points of height at most B, is finite (it is bounded by (2B + 1)ⁿ⁺¹).
- Manin conjecture predicts the asymptotic behaviour of the number of rational points of the height at most B. In the case of Pⁿ, it is known as Schanuel's theorem |{x ∈ Pⁿ(Q)|H(x) ≤ B}| ~ 2^{nBⁿ⁺¹}/_{C(n+1)}.

- Heights measure arithmetic complexity of a rational point on a variety.
- Let x ∈ Pⁿ(Q).One has homogenous coordinates
 x = [x₀ : x₁ : · · · : x_n].Moreover, one can take x_i ∈ Zand gcd(x_i) = 1. One sets H(x) := max_j(|x_j|).
- Northcott property: Number of points of height at most B, is finite (it is bounded by (2B + 1)ⁿ⁺¹).
- Manin conjecture predicts the asymptotic behaviour of the number of rational points of the height at most *B*. In the case of \mathbb{P}^n , it is known as Schanuel's theorem $|\{\mathbf{x} \in \mathbb{P}^n(\mathbb{Q}) | H(\mathbf{x}) \leq B\}| \sim \frac{2^n B^{n+1}}{\zeta(n+1)}$.
- Application: Probability that two numbers are coprime $\frac{6}{\pi^2} = \frac{1}{\zeta(2)}$.

Let X be a variety and let L be a very ample line bundle on X.

Let X be a variety and let L be a very ample line bundle on X. There exist integer n and a closed immersion $g: X \to \mathbb{P}^n$ such that $L = g^*(\mathcal{O}(1))$. Let X be a variety and let L be a very ample line bundle on X. There exist integer n and a closed immersion $g: X \to \mathbb{P}^n$ such that $L = g^*(\mathcal{O}(1))$. We obtain a height on $X(\mathbb{Q})$ by setting $H_{g,L}(\mathbf{x}) = H(g(x))$. Let X be a variety and let L be a very ample line bundle on X. There exist integer n and a closed immersion $g: X \to \mathbb{P}^n$ such that $L = g^*(\mathcal{O}(1)).$ We obtain a height on $X(\mathbb{Q})$ by setting $H_{g,L}(\mathbf{x}) = H(g(x)).$ If we had used another morphism $f: X \to \mathbb{P}^n$ such that $L = f^*(\mathcal{O}(1)),$ then $\log(H_{f,L}) - \log(H_{g,L}) = O(1)$ Let X be a variety and let L be a very ample line bundle on X. There exist integer n and a closed immersion $g: X \to \mathbb{P}^n$ such that $L = g^*(\mathcal{O}(1)).$ We obtain a height on $X(\mathbb{Q})$ by setting $H_{g,L}(\mathbf{x}) = H(g(x)).$ If we had used another morphism $f: X \to \mathbb{P}^n$ such that $L = f^*(\mathcal{O}(1)),$ then $\log(H_{f,L}) - \log(H_{g,L}) = O(1)$ Every line bundle writes us $L_1 \otimes L_2^{-1}$. We define $H_L = H_{L_1}H_{L_2}^{-1}$. Let X be a variety and let L be a very ample line bundle on X. There exist integer n and a closed immersion $g : X \to \mathbb{P}^n$ such that $L = g^*(\mathcal{O}(1))$. We obtain a height on $X(\mathbb{Q})$ by setting $H_{g,L}(\mathbf{x}) = H(g(x))$. If we had used another morphism $f : X \to \mathbb{P}^n$ such that $L = f^*(\mathcal{O}(1))$, then $\log(H_{f,L}) - \log(H_{g,L}) = O(1)$ Every line bundle writes us $L_1 \otimes L_2^{-1}$. We define $H_L = H_{L_1}H_{L_2}^{-1}$. Additivity: $\log(H_{I \otimes I'}) = \log(H_I) + \log(H_{I'}) + O(1)$. Let X be a variety and let L be a very ample line bundle on X. There exist integer n and a closed immersion $g : X \to \mathbb{P}^n$ such that $L = g^*(\mathcal{O}(1))$. We obtain a height on $X(\mathbb{Q})$ by setting $H_{g,L}(\mathbf{x}) = H(g(x))$. If we had used another morphism $f : X \to \mathbb{P}^n$ such that $L = f^*(\mathcal{O}(1))$, then $\log(H_{f,L}) - \log(H_{g,L}) = O(1)$ Every line bundle writes us $L_1 \otimes L_2^{-1}$. We define $H_L = H_{L_1}H_{L_2}^{-1}$. Additivity: $\log(H_{L\otimes L'}) = \log(H_L) + \log(H_{L'}) + O(1)$. Northeest

Northcott property for ample line bundles.

Conjecture

Let X be a Fano variety (the anti-canonical line bundle K_X^{-1} is ample). There exists an open subvariety $U \subset X$ such that:

$$|\{U(\mathbb{Q})|\mathcal{H}_{\mathcal{K}_{\mathbf{x}}^{-1}}(x) \leq B\}| \sim CB(\log(B))^{\mathsf{rk}(\mathsf{Pic}(X))-1}$$
For p prime, we define $|\cdot|_p$ by $|0|_p = 0$ and by

$$|x|_p = p^{-v_p(x)}.$$

< A > < 3

For p prime, we define $|\cdot|_p$ by $|0|_p = 0$ and by

$$|x|_p = p^{-\nu_p(x)}.$$

For $p = \infty$, we define $|\cdot|_p$ by $|x|_{\infty} = |x|$.

For p prime, we define $|\cdot|_p$ by $|0|_p = 0$ and by

$$|x|_p = p^{-\nu_p(x)}.$$

For $p = \infty$, we define $|\cdot|_p$ by $|x|_{\infty} = |x|$. We have the product formula

$$\prod_{p} |x|_{p} = 1.$$

For p prime, we define $|\cdot|_p$ by $|0|_p = 0$ and by

$$|x|_p = p^{-\nu_p(x)}.$$

For $p = \infty$, we define $|\cdot|_p$ by $|x|_{\infty} = |x|$. We have the product formula

$$\prod_{p} |x|_{p} = 1.$$

Every $|\cdot|_p$ defines a metric space structure on \mathbb{Q} and let \mathbb{Q}_p be the corresponding completions.

For p prime, we define $|\cdot|_p$ by $|0|_p = 0$ and by

$$|x|_p = p^{-\nu_p(x)}.$$

For $p = \infty$, we define $|\cdot|_p$ by $|x|_{\infty} = |x|$. We have the product formula

$$\prod_{p} |x|_{p} = 1.$$

Every $|\cdot|_p$ defines a metric space structure on \mathbb{Q} and let \mathbb{Q}_p be the corresponding completions.

 $\mathbb{Z}_p := \{ x \in \mathbb{Q}_p | \ |x|_p \le 1 \}.$

- 一司

One can associate a structure of topological space on $X(\mathbb{Q}_p)$.

One can associate a structure of topological space on $X(\mathbb{Q}_p)$.

The topology is functorial, takes open immersions to topological open immersions, takes closed immersions to closed immersions, preserves fiber products.

One can associate a structure of topological space on $X(\mathbb{Q}_p)$.

The topology is functorial, takes open immersions to topological open immersions, takes closed immersions to closed immersions, preserves fiber products.

Example: $\mathbb{P}^1(\mathbb{Q}_p)$.

One can associate a structure of topological space on $X(\mathbb{Q}_p)$.

The topology is functorial, takes open immersions to topological open immersions, takes closed immersions to closed immersions, preserves fiber products.

Example: $\mathbb{P}^1(\mathbb{Q}_p)$. If $L \to X$ is a line bundle, then $L(\mathbb{Q}_p) \to X(\mathbb{Q}_p)$ is a topological \mathbb{Q}_p -line bundle.

Let X be a variety over \mathbb{Q} . A line bundle $L \to X$ induces topological line bundles $L(\mathbb{Q}_p) \to X(\mathbb{Q}_p)$ for every p prime or $p = \infty$.

A line bundle $L \to X$ induces topological line bundles $L(\mathbb{Q}_p) \to X(\mathbb{Q}_p)$ for every p prime or $p = \infty$.

We endow every of those line bundles with a metric $|| \cdot ||_p$, subject to some compatibility condition.

A line bundle $L \to X$ induces topological line bundles $L(\mathbb{Q}_p) \to X(\mathbb{Q}_p)$ for every p prime or $p = \infty$.

We endow every of those line bundles with a metric $|| \cdot ||_p$, subject to some compatibility condition.

If s is a section of L not vanishing at $x \in X(\mathbb{Q})$, we define

$$H_{L,(||\cdot||_p)_p}(x) := \prod_p ||s||_p^{-1}.$$

A line bundle $L \to X$ induces topological line bundles $L(\mathbb{Q}_p) \to X(\mathbb{Q}_p)$ for every p prime or $p = \infty$.

We endow every of those line bundles with a metric $|| \cdot ||_p$, subject to some compatibility condition.

If s is a section of L not vanishing at $x \in X(\mathbb{Q})$, we define

$$H_{L,(||\cdot||_p)_p}(x) := \prod_p ||s||_p^{-1}.$$

One has that \mathbb{Q}_p is a locally compact abelian group. Let dx_p be a Haar measure on \mathbb{Q}_p normalized by $dx_p(\mathbb{Z}_p) = 1$.

One has that \mathbb{Q}_p is a locally compact abelian group. Let dx_p be a Haar measure on \mathbb{Q}_p normalized by $dx_p(\mathbb{Z}_p) = 1$. Let dx_∞ be the Lebesgue measure on \mathbb{R} . One has that \mathbb{Q}_p is a locally compact abelian group. Let dx_p be a Haar measure on \mathbb{Q}_p normalized by $dx_p(\mathbb{Z}_p) = 1$. Let dx_∞ be the Lebesgue measure on \mathbb{R} . Let X be a variety over \mathbb{Q}_p . One has that \mathbb{Q}_p is a locally compact abelian group. Let dx_p be a Haar measure on \mathbb{Q}_p normalized by $dx_p(\mathbb{Z}_p) = 1$. Let dx_∞ be the Lebesgue measure on \mathbb{R} . Let X be a variety over \mathbb{Q}_p . Let K_X^{-1} be the anticanonical line bundle on X. One has that \mathbb{Q}_p is a locally compact abelian group. Let dx_p be a Haar measure on \mathbb{Q}_p normalized by $dx_p(\mathbb{Z}_p) = 1$. Let dx_∞ be the Lebesgue measure on \mathbb{R} . Let X be a variety over \mathbb{Q}_p . Let K_X^{-1} be the anticanonical line bundle on X. A metric on $K_X^{-1}(\mathbb{Q}_p) \to X_{\mathbb{Q}_p} = X(\mathbb{Q}_p)$ induces a Radon measure ω_p on $X(\mathbb{Q}_p)$. One has that \mathbb{Q}_p is a locally compact abelian group. Let dx_p be a Haar measure on \mathbb{Q}_p normalized by $dx_p(\mathbb{Z}_p) = 1$. Let dx_∞ be the Lebesgue measure on \mathbb{R} . Let X be a variety over \mathbb{Q}_p . Let K_X^{-1} be the anticanonical line bundle on X. A metric on $K_X^{-1}(\mathbb{Q}_p) \to X_{\mathbb{Q}_p} = X(\mathbb{Q}_p)$ induces a Radon measure ω_p on $X(\mathbb{Q}_p)$. In the case of \mathbb{P}^n , for almost all p the volume turns out to be $\frac{\zeta_p(1)}{\zeta_p(n+1)} = \frac{1-p^{-n-1}}{1-p^{-1}}$. One has that \mathbb{Q}_p is a locally compact abelian group. Let dx_p be a Haar measure on \mathbb{Q}_p normalized by $dx_p(\mathbb{Z}_p) = 1$. Let dx_{∞} be the Lebesgue measure on \mathbb{R} . Let X be a variety over \mathbb{Q}_p . Let $K_{\mathbf{v}}^{-1}$ be the anticanonical line bundle on X. A metric on $K_x^{-1}(\mathbb{Q}_p) \to X_{\mathbb{Q}_p} = X(\mathbb{Q}_p)$ induces a Radon measure ω_p on $X(\mathbb{O}_p)$. In the case of \mathbb{P}^n , for almost all p the volume turns out to be $\frac{\zeta_p(1)}{\zeta_p(n+1)} = \frac{1-p^{-n-1}}{1-p^{-1}}.$ Peyre defines a measure ω on $\prod_{p} X(\mathbb{Q}_p)$.

Change of metric < -> change of leading constant.

Change of metric $\langle - \rangle$ change of leading constant. Peyre conjectures that the leading constant is proportional to $C_{\text{Peyre}} = \omega(X(\mathbb{A}_{\mathbb{Q}})).$

Change of metric $\langle - \rangle$ change of leading constant. Peyre conjectures that the leading constant is proportional to $C_{\text{Peyre}} = \omega(X(\mathbb{A}_{\mathbb{Q}})).$ The exact factor of proportionality is conjectured to be related to the position of K_X^{-1} in the ample cone α_V (in the case of \mathbb{P}^n it is given by $\frac{1}{n+1}$).

Change of metric $\langle - \rangle$ change of leading constant. Peyre conjectures that the leading constant is proportional to $C_{\text{Peyre}} = \omega(X(\mathbb{A}_{\mathbb{Q}})).$ The exact factor of proportionality is conjectured to be related to the position of K_X^{-1} in the ample cone α_V (in the case of \mathbb{P}^n it is given by $\frac{1}{n+1}$).

Conjecture

Let X be a Fano variety (the anti-canonical line bundle K_X^{-1} is ample). There exists an open subvariety $U \subset X$ such that:

$$|\{U(\mathbb{Q})|H_{K_{\mathbf{x}}^{-1}}(\mathbf{x}) \leq B\}| \sim \alpha_V C_{\mathsf{Peyre}} B(\mathsf{log}(B))^{\mathsf{rk}(\mathsf{Pic}(X))-1}$$

Change of metric $\langle - \rangle$ change of leading constant. Peyre conjectures that the leading constant is proportional to $C_{\text{Peyre}} = \omega(X(\mathbb{A}_{\mathbb{Q}})).$ The exact factor of proportionality is conjectured to be related to the position of K_X^{-1} in the ample cone α_V (in the case of \mathbb{P}^n it is given by $\frac{1}{n+1}$).

Conjecture

Let X be a Fano variety (the anti-canonical line bundle K_X^{-1} is ample). There exists an open subvariety $U \subset X$ such that:

$$|\{U(\mathbb{Q})|H_{K_{\mathbf{v}}^{-1}}(x) \leq B\}| \sim \alpha_V C_{\mathsf{Peyre}} B(\mathsf{log}(B))^{\mathsf{rk}(\mathsf{Pic}(X))-1}$$

This version admits counterexamples. There exists version without known counterexamples.

- Toric varieties
- 2 Equivariant compactifications of vector groups
- Some Del-Pezzo surfaces

An approach with abstract harmonic analysis.

$$Z(s) := \sum_{\mathbf{x} \in X(\mathbb{Q})} H(x)^{-s}.$$

$$Z(s) := \sum_{\mathbf{x} \in X(\mathbb{Q})} H(x)^{-s}.$$

Northcott property gives that the number of points of height less than B can be bounded by a polynomial in B.

$$Z(s) := \sum_{\mathbf{x} \in X(\mathbb{Q})} H(x)^{-s}.$$

Northcott property gives that the number of points of height less than *B* can be bounded by a polynomial in *B*. Hence, for $\Re(s) \gg 0$, the series defining *T* converges

Hence, for $\Re(s) \gg 0$, the series defining Z converges.

$$Z(s) := \sum_{\mathbf{x} \in X(\mathbb{Q})} H(x)^{-s}.$$

Northcott property gives that the number of points of height less than B can be bounded by a polynomial in B. Hence, for $\Re(s) \gg 0$, the series defining Z converges.

We study poles and maximal meromorphic extension of Z.

$$Z(s) := \sum_{\mathbf{x} \in X(\mathbb{Q})} H(x)^{-s}.$$

Northcott property gives that the number of points of height less than B can be bounded by a polynomial in B.

Hence, for $\Re(s) \gg 0$, the series defining Z converges.

We study poles and maximal meromorphic extension of Z.

We apply "Tauberian theorems" to obtain the asymptotic behaviour for the wanted asymptotic.

We consider subgroup

$$\mathbb{G}_m(\mathbb{A}_\mathbb{Q}) := \prod'_p \mathbb{G}_m(\mathbb{Q}_p)[\mathbb{G}_m(\mathbb{Z}_p)] \subset \prod_p \mathbb{G}_m(\mathbb{Q}_p).$$

Image: A matrix

We consider subgroup

$$\mathbb{G}_m(\mathbb{A}_\mathbb{Q}) := \prod'_p \mathbb{G}_m(\mathbb{Q}_p)[\mathbb{G}_m(\mathbb{Z}_p)] \subset \prod_p \mathbb{G}_m(\mathbb{Q}_p).$$

It is locally compact.
$$\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}}) := \prod'_{\rho} \mathbb{G}_m(\mathbb{Q}_{\rho})[\mathbb{G}_m(\mathbb{Z}_{\rho})] \subset \prod_{\rho} \mathbb{G}_m(\mathbb{Q}_{\rho}).$$

It is locally compact.

For every p one has inclusion $\mathbb{G}_m(\mathbb{Q}) \subset \mathbb{G}_m(\mathbb{Q}_p)$.

$$\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}}) := \prod'_{\rho} \mathbb{G}_m(\mathbb{Q}_{\rho})[\mathbb{G}_m(\mathbb{Z}_{\rho})] \subset \prod_{\rho} \mathbb{G}_m(\mathbb{Q}_{\rho}).$$

It is locally compact.

For every p one has inclusion $\mathbb{G}_m(\mathbb{Q}) \subset \mathbb{G}_m(\mathbb{Q}_p)$. The image of $\mathbb{G}_m(\mathbb{Q}) \to \prod_p \mathbb{G}_m(\mathbb{Q}_p)$ lies in $\mathbb{G}_m(\mathbb{A}_\mathbb{Q})$ and is a discrete and closed subgroup.

$$\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}}) := \prod_{\rho}' \mathbb{G}_m(\mathbb{Q}_{\rho})[\mathbb{G}_m(\mathbb{Z}_{\rho})] \subset \prod_{\rho} \mathbb{G}_m(\mathbb{Q}_{\rho}).$$

It is locally compact.

For every p one has inclusion $\mathbb{G}_m(\mathbb{Q}) \subset \mathbb{G}_m(\mathbb{Q}_p)$. The image of $\mathbb{G}_m(\mathbb{Q}) \to \prod_p \mathbb{G}_m(\mathbb{Q}_p)$ lies in $\mathbb{G}_m(\mathbb{A}_\mathbb{Q})$ and is a discrete and closed subgroup.

Measure
$$\mu_p := \frac{dx_p}{(1-|\pi_v|_v)|x|_p}$$
 is a Haar measure on $\mathbb{G}_m(\mathbb{Q}_p)$.

$$\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}}) := \prod_{\rho}' \mathbb{G}_m(\mathbb{Q}_{\rho})[\mathbb{G}_m(\mathbb{Z}_{\rho})] \subset \prod_{\rho} \mathbb{G}_m(\mathbb{Q}_{\rho}).$$

It is locally compact.

For every p one has inclusion $\mathbb{G}_m(\mathbb{Q}) \subset \mathbb{G}_m(\mathbb{Q}_p)$. The image of $\mathbb{G}_m(\mathbb{Q}) \to \prod_p \mathbb{G}_m(\mathbb{Q}_p)$ lies in $\mathbb{G}_m(\mathbb{A}_\mathbb{Q})$ and is a discrete and closed subgroup. Measure p is a Hear measure on $\mathbb{C}_p(\mathbb{Q}_p)$

Measure $\mu_p := \frac{dx_p}{(1-|\pi_v|_v)|x|_p}$ is a Haar measure on $\mathbb{G}_m(\mathbb{Q}_p)$. We deduce a Haar measure μ on $\mathbb{G}_m(\mathbb{A}_\mathbb{Q})$.

$$\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}}) := \prod_{\rho}' \mathbb{G}_m(\mathbb{Q}_{\rho})[\mathbb{G}_m(\mathbb{Z}_{\rho})] \subset \prod_{\rho} \mathbb{G}_m(\mathbb{Q}_{\rho}).$$

It is locally compact.

For every p one has inclusion $\mathbb{G}_m(\mathbb{Q}) \subset \mathbb{G}_m(\mathbb{Q}_p)$. The image of $\mathbb{G}_m(\mathbb{Q}) \to \prod_p \mathbb{G}_m(\mathbb{Q}_p)$ lies in $\mathbb{G}_m(\mathbb{A}_\mathbb{Q})$ and is a discrete and closed subgroup. Measure p is a Hear measure on $\mathbb{C}_p(\mathbb{Q}_p)$

Measure $\mu_p := \frac{dx_p}{(1-|\pi_v|_v)|x|_p}$ is a Haar measure on $\mathbb{G}_m(\mathbb{Q}_p)$. We deduce a Haar measure μ on $\mathbb{G}_m(\mathbb{A}_\mathbb{Q})$. Let G be an abelian locally compact group endowed with a Haar measure dg.

Let G be an abelian locally compact group endowed with a Haar measure dg. Let H be a closed subgroup endowed with a Haar measures dh.

Let G be an abelian locally compact group endowed with a Haar measure dg. Let H be a closed subgroup endowed with a Haar measures dh. Endow G/H with the quotient Haar measure dg/dh. Let G be an abelian locally compact group endowed with a Haar measure dg. Let H be a closed subgroup endowed with a Haar measures dh. Endow G/H with the quotient Haar measure dg/dh.

Theorem (Poisson formula)

Let $f : G \to \mathbb{C}$ be an L^1 -function on G and \hat{f} its Fourier transform with respect to dg. Suppose that \hat{f} is an L^1 -function on $(G/H)^*$. One has that

$$\int_{H} f dh = \int_{(G/H)^*} \hat{f}(\chi) d\chi,$$

where $d\chi = (dg/dh)^*$.

Count rational points on the torus

$$\mathbb{G}_m^1 \subset \mathbb{P}^1.$$

Count rational points on the torus

$$\mathbb{G}_m^1 \subset \mathbb{P}^1.$$

Height zeta function:

$$Z'(s) := \sum_{x \in \mathbb{G}_m(\mathbb{Q})} H(x)^{-s}.$$

Count rational points on the torus

$$\mathbb{G}_m^1 \subset \mathbb{P}^1.$$

Height zeta function:

$$Z'(s) := \sum_{x \in \mathbb{G}_m(\mathbb{Q})} H(x)^{-s}.$$

We extend the definition of H on $\mathbb{G}_m(\mathbb{Q})$ to $H = \prod_p H_p$ on $\mathbb{G}_m(\mathbb{A}_Q)$.

Count rational points on the torus

$$\mathbb{G}_m^1 \subset \mathbb{P}^1.$$

Height zeta function:

$$Z'(s) := \sum_{x \in \mathbb{G}_m(\mathbb{Q})} H(x)^{-s}.$$

We extend the definition of H on $\mathbb{G}_m(\mathbb{Q})$ to $H = \prod_p H_p$ on $\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}})$. We calculate Fourier transform of $x \mapsto H(x)^{-s}$ with the respect to a character χ of $\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}})$ which is trivial on $\mathbb{G}_m(\mathbb{Q})$.

Count rational points on the torus

$$\mathbb{G}_m^1 \subset \mathbb{P}^1.$$

Height zeta function:

$$Z'(s) := \sum_{x \in \mathbb{G}_m(\mathbb{Q})} H(x)^{-s}.$$

We extend the definition of H on $\mathbb{G}_m(\mathbb{Q})$ to $H = \prod_p H_p$ on $\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}})$. We calculate Fourier transform of $x \mapsto H(x)^{-s}$ with the respect to a character χ of $\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}})$ which is trivial on $\mathbb{G}_m(\mathbb{Q})$. One has

$$\widehat{H}(s,\chi) = \prod_{p} \int_{p} H_{\mathbb{Q}_{p}}(x)^{-s} \chi_{p}(x) \frac{dx_{p}}{|x|_{p}}.$$

Count rational points on the torus

$$\mathbb{G}_m^1 \subset \mathbb{P}^1.$$

Height zeta function:

$$Z'(s) := \sum_{x \in \mathbb{G}_m(\mathbb{Q})} H(x)^{-s}.$$

We extend the definition of H on $\mathbb{G}_m(\mathbb{Q})$ to $H = \prod_p H_p$ on $\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}})$. We calculate Fourier transform of $x \mapsto H(x)^{-s}$ with the respect to a character χ of $\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}})$ which is trivial on $\mathbb{G}_m(\mathbb{Q})$. One has

$$\widehat{H}(s,\chi) = \prod_{p} \int_{p} H_{\mathbb{Q}_{p}}(x)^{-s} \chi_{p}(x) \frac{dx_{p}}{|x|_{p}}.$$

We will apply Poisson formula for the function $x \mapsto H(x)^{-s}$ which is

$$Z'(s) = \sum_{x \in \mathbb{G}_m(\mathbb{Q})} H(x)^{-s} = \int_{(\mathbb{G}_m(\mathbb{A}_\mathbb{Q})/\mathbb{G}_m(\mathbb{Q}))^*} \widehat{H}(s,\chi) d\chi^*$$

We obtain pole and meromorphic continuation of Z.

We will apply Poisson formula for the function $x \mapsto H(x)^{-s}$ which is

$$Z'(s) = \sum_{x \in \mathbb{G}_m(\mathbb{Q})} H(x)^{-s} = \int_{(\mathbb{G}_m(\mathbb{A}_\mathbb{Q})/\mathbb{G}_m(\mathbb{Q}))^*} \widehat{H}(s,\chi) d\chi^*$$

We obtain pole and meromorphic continuation of Z.

- S. Zhang, Small points and adelic metrics, J. Algebraic Geometry, 4, p. 281-300
- E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), p. 101-218.
- V. Batyrev, Yu. Tschinkel, Rational points of bounded height on compactifications of anisotropic tori, IMRN 12, (1995), 591-635.
- V. Batyrev, Y. Tschinkel, Height zeta functions of toric varieties, Journal Math. Sciences 82 (1996), no. 1, p. 3220-3239.;
- A. Chambert-Loir, Y. Tschinkel, Integral points of bounded height on toric varieties, 2010, 29 pages. Link to arXiv:1006.3345

Thank you!

э.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A