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We work over field Q.
Let X be an algebraic variety over Q
Suppose dim(X) = 1.
Let g be its genus.
e g >1 = by Faltings theorem X(Q) is finite.
e g =1 = X is an elliptic curve X(Q) is an abelian finitely
generated group.

e g =0 = if X(Q) # 0, then X = P!, the rational points X(Q) are
Zariski dense.

When dim(X) > 1 the condition g = 0 is replaced by K;l = NPTy is
ample.
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X =[x0:x1 - xy].Moreover, one can take x; € Zand gcd(x;) = 1.
One sets H(x) := max;(|xj|).

@ Northcott property: Number of points of height at most B, is finite
(it is bounded by (2B + 1)"+1).

@ Manin conjecture predicts the asymptotic behaviour of the number of
rational points of the height at most B. In the case of P”, it is known

, ongn+l

as Schanuel's theorem [{x € P"(Q)|H(x) < B}| ~ CEE

@ Application: Probability that two numbers are coprime % =0
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Weil's height machine

Let X be a variety and let L be a very ample line bundle on X.

There exist integer n and a closed immersion g : X — P" such that
L= g"(0(1).

We obtain a height on X(Q) by setting Hg 1 (x) = H(g(x)).

If we had used another morphism f : X — P” such that L = f*(O(1)),
then log(Hy,1) — log(Hg,1) = O(l)

Every line bundle ertes us L1 ® L . We define H, = H, HL_21.
Additivity: log(Higr) = log(HL) + log(HL) + O(1).

Northcott property for ample line bundles.
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Statement of the conjecture

Let X be a Fano variety (the anti-canonical line bundle Ky s ample ).
There exists an open subvariety U C X such that:

|{U(Q)|HK;1(x) < B}| ~ CB(log(B))(Pie(x)-1,
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Absolute values on QQ

For p prime, we define | - |, by |0, = 0 and by

‘X‘P — p_VP(X)'
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Absolute values on QQ

For p prime, we define | - |, by |0, = 0 and by
‘X‘P — p_VP(X)'

For p = oo, we define | - |, by |x|oo = |X].
We have the product formula

H|X|p:1-
P

Every | - |, defines a metric space structure on Q and let Q, be the
corresponding completions.

Zp = {x € Qp| |x|p < 1}.
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Topology on X(Q))

Let X be a variety over Qp.

One can associate a structure of topological space on X(Q)).

The topology is functorial, takes open immersions to topological open
immersions, takes closed immersions to closed immersions, preserves fiber
products.

Example: P1(Q,).

If L — X is a line bundle, then L(Q,) — X(Q)) is a topological Qp-line
bundle.
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asures on X(Q))

One has that Q, is a locally compact abelian group. Let dx, be a Haar
measure on Q, normalized by dx,(Z,) = 1.
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One has that Q, is a locally compact abelian group. Let dx, be a Haar
measure on Q, normalized by dx,(Z,) = 1.

Let dx., be the Lebesgue measure on R.

Let X be a variety over Q.

Let K)?l be the anticanonical line bundle on X.

A metric on Kx'(Qp) — Xg, = X(Qp) induces a Radon measure w;, on
X(Qp).

In the case of P7, for almost all p the volume turns out to be
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Measures on X(Q))

One has that Q, is a locally compact abelian group. Let dx, be a Haar
measure on Q, normalized by dx,(Z,) = 1.
Let dx., be the Lebesgue measure on R.
Let X be a variety over Q.
Let K)?l be the anticanonical line bundle on X.
A metric on Kx'(Qp) — Xg, = X(Qp) induces a Radon measure w;, on
X(Qp).
In the case of P7, for almost all p the volume turns out to be
(1) _ 1—p—n-t
Gp(n+1) — 1-p~t -
Peyre defines a measure w on HPX(QP).
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Change of metric< — > change of leading constant.
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Refined conjecture

Change of metric< — > change of leading constant.

Peyre conjectures that the leading constant is proportional to
CPeyre = W(X(AQ))
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Refined conjecture

Change of metric< — > change of leading constant.

Peyre conjectures that the leading constant is proportional to

Cpeyre = w(X(Aq)).

The exact factor of proportionality is conjectured to be related to the
position of K)?l in the ample cone ay (in the case of P it is given by

1
n+1)'
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Conjecture

Let X be a Fano variety (the anti-canonical line bundle K;l is ample).
There exists an open subvariety U C X such that:
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Refined conjecture

Change of metric< — > change of leading constant.

Peyre conjectures that the leading constant is proportional to

Cpeyre = w(X(Aq)).

The exact factor of proportionality is conjectured to be related to the
position of K)?l in the ample cone ay (in the case of P it is given by

1
n+1)'

Conjecture

Let X be a Fano variety (the anti-canonical line bundle K;l is ample).
There exists an open subvariety U C X such that:

|{U(Q)|HK;1(X) < B}| ~ avCpeyreB(Iog(B))rk(PiC(X))—l‘

This version admits counterexamples. There exists version without known
counterexamples.
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Some of the known cases

© Toric varieties
@ Equivariant compactifications of vector groups

© Some Del-Pezzo surfaces
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An approach with abstract harmonic analysis.
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Height zeta function

For s € C, define
Z(s):= > HXx)".

xeX(Q)
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Northcott property gives that the number of points of height less than B
can be bounded by a polynomial in B.
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Height zeta function

For s € C, define

Z(s):= > HXx)".

xeX(Q)

Northcott property gives that the number of points of height less than B
can be bounded by a polynomial in B.
Hence, for R(s) > 0, the series defining Z converges.
We study poles and maximal meromorphic extension of Z.
We apply “Tauberian theorems” to obtain the asymptotic behaviour for
the wanted asymptotic.
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Ideles

We consider subgroup

Gnlae) = [ Gnl(@)Cn(Zp)] € []Cm(Qy).

p
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For every p one has inclusion G(Q) C Gr(Qp).
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Ideles

We consider subgroup

Gnlae) = [ Gnl(@)Cn(Zp)] € []Cm(Qy).

p

It is locally compact.

For every p one has inclusion G(Q) C Gr(Qp).
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Abstract harmonic analysis

Let G be an abelian locally compact group endowed with a Haar measure
dg.
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Abstract harmonic analysis

Let G be an abelian locally compact group endowed with a Haar measure
dg. Let H be a closed subgroup endowed with a Haar measures dh.
Endow G/H with the quotient Haar measure dg/dh.

Theorem (Poisson formula)

Let f : G — C be an L -function on G and f its Fourier transform with
respect to dg. Suppose that f is an L-function on (G/H)*. One has that

/ fdh = / F(x)dx,
H (G/H)*
where dx = (dg/dh)*.
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Idea of the proof for toric varieties

Count rational points on the torus

GL, c P.
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Idea of the proof for toric varieties

We will apply Poisson formula for the function x — H(x)™° which is

Z'(s)= Y H(x

x€Gm(Q)

/ H(s,x)dx".
(Gm(Ag)/Gm(Q))*

We obtain pole and meromorphic continuation of Z.
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Thank you!
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