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Meanders and arc systems

3 / 38

A closed meander is a smooth simple closed curve in the plane transversally
intersecting the horizontal line.

According to S. Lando and A. Zvonkin the notion “meander” was suggested by

V. Arnold though meanders were studied already by H. Poincaré.

Meanders appear in various contexts, in particular in mathematics, physics and
biology.
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Conjecture (S. Lando and A. Zvonkin, 1993). The number of meanders with
2N crossings is asymptotic to

const ·R2N ·Nα for N → ∞ ,

where R2 ≈ 12.26 (value is due to I. Jensen) and α = −29+
√
145

12
(conjectural value due to P. Di Francesco, O. Golinelli, E. Guitter, 1997).
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.

Compactifying the plane (left picture) with one point at infinity, or gluing

together arc systems on the two discs (right picture) we get an ordered pair of

smooth simple transversally intersecting closed curves on the sphere.

Combinatorial passport



Meanders versus multicurves
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It is much easier to count arc systems (for example, arc systems sharing the

same reduced dual tree). However, this does not simplify counting meanders

since identifying a pair of arc systems with the same number of arcs by the

common equator, we sometimes get a meander and sometimes — a

multicurve, i.e. a curve with several connected components.

Attaching arc systems on a pair of hemispheres along the common equator we

might get a single simple closed curve (as on the left picture) or a multicurve
with several connected components (as on the right picture).



Meanders versus multicurves

4 / 38

It is much easier to count arc systems (for example, arc systems sharing the

same reduced dual tree). However, this does not simplify counting meanders

since identifying a pair of arc systems with the same number of arcs by the

common equator, we sometimes get a meander and sometimes — a

multicurve, i.e. a curve with several connected components.

Attaching arc systems on a pair of hemispheres along the common equator we

might get a single simple closed curve (as on the left picture) or a multicurve
with several connected components (as on the right picture).



Asymptotic frequency of meanders
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Fix any connected planar tree TNorth on the northern hemisphere and any

connected planar tree TSouth on the southern hemisphere, each tree having no

vertices of valence 2. Consider all possible pairs of arc systems with the same

number n ≤ N of arcs having TNorth and TSouth as reduced dual trees. There

are 2n ways to identify isometrically the two hemispheres into the sphere in
such way that the endpoints of the arcs match. Consider all possible triples

(n-arc system of type TNorth ; n-arc system of type TSouth ; identification)

as described above for all n ≤ N . Define

Pconnected(TNorth , TSouth ;N) :=
number of triples giving rise to meanders

total number of different triples
.
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Theorem. Let pNorth , pSouth ≥ 2. Let p = pNorth + pSouth . The frequency

Pconnected(pNorth , pSouth ;N) of meanders obtained by all possible

identifications of all arc systems with at most N arcs represented by all

possible pairs of plane trees having pNorth , pSouth of leaves (vertices of
valence one) has the following limit:

lim
N→+∞

Pconnected(pNorth , pSouth ;N) =
1

2

(

2

π2

)p−3

·

(

2p− 4

p− 2

)

.

Example. lim
N→+∞

Pconnected( , , N) =

= lim
N→+∞

Pconnected( , , N) = 280
π6 ≈ 0.291245 .



Meanders with and without maximal arc
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These two meanders have 5 minimal arcs (“pimples”) each.

Meander with a maximal arc (“rainbow”) Meander without maximal arc
contributes to M+

5 (N) contributes to M−
5 (N)

Let M+
p (N) and M−

p (N) be the numbers of closed meanders respectively

with and without maximal arc (“rainbow”) and having at most 2N crossings with
the horizontal line and exactly p minimal arcs (“pimples”). We consider p as a

parameter and we study the leading terms of the asymptotics of M+
p (N) and

M−
p (N) as N → +∞.



Counting formulae for meanders

8 / 38

Theorem. For any fixed p the numbers M+
p (N) and M−

p (N) of closed

meanders with p minimal arcs (pimples) and with at most 2N crossings have

the following asymtotics as N → +∞:

M+
p (N) =

2

p! (p− 3)!

(

2

π2

)p−2

·

(

2p− 2

p− 1

)2

·
N2p−4

4p− 8
+ o(N2p−4) .

M−
p (N) =

4

p! (p− 4)!

(

2

π2

)p−3

·

(

2p− 4

p− 2

)2

·
N2p−5

4p− 10
+ o(N2p−5) .

Note that M+
p (N) grows as N2p−4 while M−

p (N) grows as N2p−5.



Meanders in higher genera

9 / 38

A pair of smooth simple closed transverse oriented multicurves is called

positively intersecting if each connected component of each multicurve is

oriented in such way that all intersections match the orientation of the surface.

A pair of transverse multicurves is called orientable if it admits an orientation

with positive intersection and non-orientable otherwise.

Exercise. Verify that the pair of transverse multicurves on the right is positively

intersecting and that the pair of multicurves on the left is non-orientable.

Definition. A meander on a surface of genus g is an ordered pair of smooth

transverse simple closed curves considered up to a diffeomorphism of the

surface. Similarly we define positive meanders.



Results: general (non-orientable) case
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Fix the genus g of the surface. Fix a nonnegative integer p denoting the

number of bigons produced by intersections of pairs of multicurves.

Observation. The following quantities have polynomial asymptotics:

• Number of pairs of transverse multicurves with at most N intersections and

with exactly p bigons = c(g, p) ·N6g−6+2p + o(N6g−6+2p).
• Number of pairs (simple closed curve, transverse multicurve) with at most

N intersections and p bigons = c1(g, p) ·N
6g−6+2p + o(N6g−6+2p).

• Number of meanders with at most N intersections and with exactly p
bigons = c1,1(g, p) ·N

6g−6+2p + o(N6g−6+2p).

Theorem. The coefficients c(g, p), c1(g, p), c1,1(g, p) satisfy the following

relation:
c1(g, p)

c(g, p)
=

c1,1(g, p)

c1(g, p)
.
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The coefficients in these asymptotics have the following arithmetic nature:

c(g, p) = r(g, p) ·π6g−6+2n, c1(g, p) = r1(g, p); r(g, p), r1(g, p) ∈ Q .

For small p and for g, say, up to 500, we can compute the rational numbers

r(g, p) explicitly (based on results of D. Chen–M. Möller–A. Sauvaget

combined with results of M. Kazarian or D. Yang, D. Zagier, and Y. Zhang).

For the same range of g and p we can compute the rational numbers r1(g, p)
explicitly (based on our own results).

For any fixed p we also have a simple asymptotic formulae for r(g, p) and

r1(g, p) as g → +∞ (our results combined with results of A. Aggarwal).

Since c1,1(g, p) =
c21(g, p)

c(g, p)
, in all these cases we get absolutely explicit

asymptotic formulae for the count of meanders in genus g.



Asymptotic frequency of meanders
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As in genus 0, we can construct multicurves from systems of arcs on a surface

of genus g − 1 with two boundary components or on a pair of surfaces of

genera g1 and g2, where g1 + g2 = g, each with a single boundary

component. As before we fix the total number p of bigons. We assume that
there are exactly n arcs landing to each of the two boundary components, and

that n ≤ N .

Theorem. The asymptotic probability to get a meander after a random gluing
of a random system of arcs as above is c1(g,p)

c(g,p) .



Results on positively intersecting pairs of multicurves

13 / 38

The case of positively intersecting pairs of multicurves is analogous. However,

the power of N and all the coefficients in the polynomial asymptotics do

change. Fix the genus g of the surface.

Observation. The following quantities have polynomial asymptotics:

• Number of pairs of transverse positively intersecting multicurves with at

most N intersections = c+(g) ·N4g−3 + o(N4g−3).
• Number of positively intersecting pairs (simple closed curve, transverse

multicurve) with at most N intersections = c+1 (g) ·N
4g−3 + o(N4g−3).

• Number of positive meanders with at most N intersections

= c+1,1(g) ·N
4g−3 + o(N4g−3).

Theorem. The coefficients c+(g), c+1 (g), c
+
1,1(g) satisfy the relation:

c+1 (g)

c+(g)
=

c+1,1(g)

c+1 (g)
.



Results on positively intersecting pairs of multicurves

14 / 38

The coefficients in these asymptotics have the following arithmetic nature:

c+(g) = r+(g) · π2g, c+1 (g) = r+1 (g), where r+(g), r+1 (g) ∈ Q .

(the first result was proved by A. Eskin and A. Okounkov; the second one is

simple.) For g, say, up to 2000, we can compute the rational numbers r+(g)
explicitly (small g — due to A. Eskin and A. Okounkov, 2003; larger g —

D. Chen–M. Möller–A. Sauvaget–D. Zagier, 2020).

For any g we have a simple formula for r+1 (g) (our own results, 2020).

We also have simple asymptotic formulae for r+(g) and r+1 (g) as g → +∞
(results of D. Chen–M. Möller–D. Zagier, 2018, for r+(g); independent result of
A. Aggarwal, 2019; our result based on the result of D. Zagier, 1995, for r+1 (g)).

Since c+1,1(g) =

(

c+1 (g)
)2

c+(g)
, we can count positive meanders in genus g.



Asymptotic frequency of positive meanders
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As before we can glue systems of arcs on a surface of genus g − 1 with two

boundary components. This time we assume that each of n arc goes from one

boundary component to the other, and that n ≤ N .

Theorem. The asymptotic probability to get a positive meander after a random

gluing of a system of arcs as above is
c+
1
(g)

c+g
. We have

c+1 (g)

c+g
=

1

4g
+ o

(

1

g

)

as g → +∞ .
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An example of a square-tiled surface
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Square-tiled surfaces: formal definition
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Take a finite set of copies of identical oriented squares for which two opposite

sides are chosen to be horizontal and the remaining two sides are declared to

be vertical. Identify pairs of sides of the squares by isometries in such way that

horizontal sides are glued to horizontal sides and vertical sides to vertical. We

get a topological surface S without boundary. We consider only those surfaces
obtained in this way which are connected and oriented. The form dz2 on each

square is compatible with the gluing and endows S with a complex structure

and with a non-zero quadratic differential q = dz2 with at most simple poles.

We call such a surface a square-tiled surface.

Fix the orientation of the horizontal and of the vertical sides of the initial square

compatible with the orientation of the coordinate rays Ox and Oy, where

z = x+ iy. The quadratic differential q = dz2 is a square of a globally
defined Abelian differential ω = dz if and only if all identifications of the sides

respect the orientation.



Pairs of transverse multicurves as square-tiled surfaces
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere.
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere. Consider the maximal collection of horizontal
lines passing through the centers of the squares. Color them in red. This is the

horizontal multicurve.
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere. Consider the maximal collection of horizontal
lines passing through the centers of the squares. Color them in red. This is the

horizontal multicurve. Consider the maximal collection of vertical lines

passing through the centers of the squares. Color them in blue. This is the

vertical multicurve.
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere. Consider the maximal collection of horizontal
lines passing through the centers of the squares. Color them in red. This is the

horizontal multicurve. Consider the maximal collection of vertical lines

passing through the centers of the squares. Color them in blue. This is the

vertical multicurve. Reciprocally, any transverse connected pair of multicurves

on a sphere defines a square-tiling given by the graph dual to the graph formed

by the pair of multicurves.
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Period coordinates, volume element, and unit hyperboloid
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C

ω ∧ ω̄ =

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where

r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the
volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on the hyperboloid H1 and d = dimC H(m1, . . . ,mn).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian or quadratic differentials is finite.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→

(
∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z ⊕ iZ) = T ,

where P1 is a zero of ω. The ramification points of the cover are exactly the

zeroes of ω.
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∫ P
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ω mod Z ⊕ iZ

)

∈ C/(Z ⊕ iZ) = T ,

where P1 is a zero of ω. The ramification points of the cover are exactly the

zeroes of ω.

Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by analogous “pillowcase covers” over CP1 branched at four
points. Thus, counting Masur–Veech volumes of strata VolH or VolQ is

equivalent to counting the coefficient c in the polynomial asymptotics c ·Nd for

the number of square-tiled surfaces in the stratum H or Q respectively, where

d is the complex dimension of the stratum.



Brief history of evaluation of Masur–Veech volumes
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• ’98, Kontsevich–Zorich: first several low-dimensional strata (combinatorics).

• ’00, ’05, Eskin–Okounkov–Pandharipande: algorithm for any stratum

(representation theory); values for low-dimensional strata of Abelian

differentials.

• ’16, Goujard: same algorithm; values in low dimensional strata of quadratic
differentials.

• ’16, Athreya–Eskin–Zorich (conjectured by Kontsevich): close formula for

volumes in genus 0 (dynamics+analytic Riemann Roch theorem).

• ’18, Chen–Möeller–Zagier (conjectured by Eskin–Zorich): large genus

asymptotics for the principal stratum of Abelian differentials (developing
Eskin–Okounkov).

• ’20, Aggarwal (conjectured by Eskin–Zorich): large genus asymptotics for any

stratum of Abelian differentials (developing Eskin–Okounkov+combinatorics).

• ’20, Chen–Möeller–Sauvaget–Zagier: efficient recursive formula for the strata

of Abelian differentials (intersection theory).



Recent developments in evaluation of Masur–Veech volumes
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• ’20, Delecroix–Goujard–Zograf–Zorich; Zograf: volume contribution of

one-cylinder square-tiled surfaces for any stratum of Abelian differentials; for

the principal stratum of quadratic differentials; for all low-dimensional strata of

quadratic differentials.

• ’21, Delecroix–Goujard–Zograf–Zorich: volume of the principal stratum of
quadratic differentials (through Kontsevich–Witten correlators).

• ’21, Andersen–Borot–Charbonnier–Delecroix–Giacchetto–Lewanski–Wheeler:

(inspired by [DGZZ]) same volumes through topological recursion.

• ’21, Chen–Möeller–Sauvaget: same volumes through Hodge integrals.

Conjectural analogous formula for general strata.
• ’21, Kazarian; independently Yang-Zagier-Zhang: efficient recursion for these

Hodge integrals.

• ’21, Aggarwal (conjectured in [DGZZ]): large genus asymptotics for the

principal stratum of quadratic differentials (involved combinatorics+probability

theory).
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Translation to the language of square-tiled surfaces

26 / 38

Every square-tiled surface defines a pair of transverse simple closed multicurves.

The number of squares is the number of intersections of the two multicurves.

Reciprocal is not always true since in genera higher than 0 a pair of transverse

multicurves might chop the surface into components more complicated than

topological discs. However, it happens rarely in terms of the asymptotic count,

so for the purposes of the count we can pretend that we have a bijection.

Bigons arising from intersection of transverse multicurves correspond to simple

poles of the associated quadratic differentials. Thus, the count of pairs of
transverse multicurves on a surface of genus g with at most N intersections

and with p bigons corresponds to the count of square-tiled surfaces of genus g
with p poles tiled by at most N squares, i.e. to evaluation of the Masur–Veech

volume of the moduli space Qg,p. In this way we get the asymptotics

c(g, p) ·N6g−6+2p for the number of multicurves and the constant c(g, p).



How we count meanders
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A pair of transverse multicurves associated to a square-tiled surface is

orientable if and only if the square-tiled surface is Abelian. Thus, the count of

positively intersecting pairs of transverse multicurves in genus g corresponds to

the count of Abelian square-tiled surfaces in genus g, i.e. to the evaluation of

the Masur–Veech volumes of the corresponding moduli space of Abelian
differentials. In this way we get the asymptotics c+(g) ·N4g−3 and the

constant c+1 (g) for the count of positively intersecting multicurves.

Pairs (simple closed curve, transverse multicurve) correspond to square-tiled

surfaces having single horizontal band of squares. We found a way to count
such square-tiled surfaces both in the Abelian and in the quadratic case and to

evaluate the constants c1(g, p) and c+1 (g) in the corresponding asymptotics

c1(g, p) ·N
6g−6+2p and c+1 (g) ·N

4g−3 respectively.

Meanders correspond to square-tiled surfaces having single horizontal and

single vertical band of squares. We apply our non-correlation theorem to get

c1,1(g, p) =
c21(g, p)

c(g, p)
and c+1,1(g) =

(

c+1 (g)
)2

c+(g)
.



Masur–Veech volume in genus zero
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ; conjectured by M. Kontsevich
about 2003) The volume of any stratum Q(d1, . . . , dk) of meromorphic

quadratic differentials with at most simple poles on CP1 (i.e. when

di ∈ {−1 ; 0} ∪ N for i = 1, . . . , k, and
∑k

i=1 di = −4) is equal to

VolQ(d1, . . . , dk) = 2π ·
k
∏

i=1

v(di) .



Masur–Veech volume in genus zero

28 / 38

In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ; conjectured by M. Kontsevich
about 2003)

VolQ0,n = 2π ·

(

π2

2

)n−4

.

Applying formula based on Kontsevich polynomials one gets ENORMOUS sum

over labeled trees, so this approach does not work. But this formula was

reproved by Chen–Möller–Sauvaget through intersection theory.
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Cylinder decomposition of a square-tiled surface
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Equidistribution and Non-correlation Theorems
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Theorem. The asymptotic proportion pk(L) of square-tiled surfaces tiled with

tiny ε× ε-squares and having exactly k maximal horizontal cylinders among all

such square-tiled surfaces living inside an open set B ⊂ L in a stratum L of

Abelian or quadratic differentials does not depend on B.

Let ck(L) be the contribution of horizontally k-cylinder square-tiled surfaces
(pillowcase covers) to the Masur–Veech volume of the stratum L, so that

c1(L) + c2(L) + · · · = VolL, and pk(L) = ck(L)/Vol(L). Let

ck,j(L) be the contribution of horizontally k-cylinder and vertically j-cylinder ones.

Theorem. There is no correlation between statistics of the number of

horizontal and vertical maximal cylinders:

ck(L)

Vol(L)
=

ckj(L)

cj(L)
.

This formula is an asymptotic formula! Proof: Maryam’s counting of volumes + Moore ergodicity theorem.
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How to count meanders

32 / 38

Step 1. There is a natural one-to-one correspondence between transverse

connected pairs of multicurves on an oriented sphere and pillowcase covers,

where the square tiling is given by the graph dual to the graph formed by the

pair of multicurves.

Step 2. Pairs of arc systems glued along common equator correspond to

square-tiled surfaces having single horizontal cylinder of height 1. Meanders

correspond to square-tiled surfaces having single horizontal cylinder and single

vertical one; both of height one. So we can apply the formula c1,1(Q) =
c2
1
(Q)

Vol(Q) ,

where c1(Q) is easy to compute and Vol(Q) in genus zero is given by an

explicit formula (obtained after 15 years of work of Athreya–Eskin–Zorich).

Step 3. Fixing the number of minimal arcs (“pimples”) we fix the number of
simple poles p of the quadratic differential. All but negligible part of the

corresponding square-tiled surfaces live in the only stratum Q(1p−4,−1p) of

the maximal dimension.
Hyperbolic metric endowes a multicurve with canonical shape. A pair of multicurves canonically defines a hyperbolic metric. Discrete analog of Hubbard–Masur Theorem.
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General philosophy
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• Pairs of transverse multicurves correspond to square-tiled surfaces. Thus,

count of all pairs of transverse multicurves is equivalent to count of

Masur–Veech volumes.

• Count of arc systems, braids, ribbon graphs, pairs: simple closed curve plus

transverse multicurve, one-cylinder square-tiled surfaces is another group of

(somehow equivalent) problems, which usually admits a more efficient solution.

• Consider the following three counting problems:

1. count of all square-tiled surfaces (i.e. Masur–Veech volume Vol);
2. count of horizontally one-cylinder square-tiled surfaces (i.e. c1);

3. count of horizontally and vertically square-tiled surfaces (i.e. c1,1).

By non-correlation, c1,1 =
c21
Vol

. Count of c1 usually admits a relatively efficient

solution. Hence, as soon as we know the appropriate Masur–Veech volume,

we know c1,1, and hence we can count meanders, pairs of transverse simple
closed curves etc.
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Count of 1-cylinder square-tiled surfaces

35 / 38

We have rather comprehensive information about Masur–Veech volumes of

strata of Abelian differentials. Namely, in all low genera we know them explicitly.

In higher genera the volume of the principal stratum H(1, . . . , 1) can be

computed exactly up to very high genus. When g → +∞ it can be computed

approximately by the works of Chen–Möller–Zagier and of
Chen–Möller–Sauvaget–Zagier. These recent papers as well as the recent

work of Aggarwal independently proved our old conjecture with Eskin:

VolH(m1, . . . ,mn) ∼
4

(m1 + 1) . . . (mn + 1)
.

By the general philosophy, to compute braids, frequencies of simple closed

curves, numbers of pairs of positively intersecting simple closed curves, etc in

this context, one has to compute contribution of 1-cylinder square-tiled
surfaces. As in the previous cases, this problem admits a solution.



1-cylinder surface as a pair of permutations
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X1

X2

X3

X4

X5

X6

X7

X8

X1

1 2 3 4 5 6 7 8

4 3 2 5 8 7 6 1

0 0

✲✝
✞ ☎

✆

✲✞
✝ ✆

☎

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8
4 → 3 → 2 → 5 → 8 → 7 → 6 → 1

cbot · c
−1
top = (1, 3)(2, 4)(5, 7)(6, 8)



Frobenius formula
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The count of 1-cylinder N -square-tiled surfaces in the stratum H(m1, . . . ,mn)
is reduced to the count of solutions of the following equation for permutations:

(N - cycle) · (N - cycle) = product of cycles of lengths m1 + 1, . . . ,mn + 1 .

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

Theorem. The absolute contribution c1(H(m1, . . . ,mn)) of 1-cylinder

square-tiled surfaces to the Masur–Veech volume VolH(m1, . . . ,mn) equals

c1 =
2

(d− 1)!
·
∏

k

1

(k + 1)µk
·
d−2
∑

j=0

j! (n− 1− j)!χj(ν) .

Here d = dimH(m1, . . . ,mn); ν ∈ Sn is any permutation with decomposition
into cycles of lengths (m1 + 1), . . . , (mn + 1); µi is the number of zeroes of

order i, i.e. the multiplicity of the entry i in the multiset {m1, . . . ,mn}.
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The count of 1-cylinder N -square-tiled surfaces in the stratum H(m1, . . . ,mn)
is reduced to the count of solutions of the following equation for permutations:

(N - cycle) · (N - cycle) = product of cycles of lengths m1 + 1, . . . ,mn + 1 .

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

Theorem. The absolute contribution c1(H(m1, . . . ,mn)) of 1-cylinder

square-tiled surfaces to the Masur–Veech volume VolH(m1, . . . ,mn)
satisfies the following bounds:

1

d+ 1
·

4

(m1 + 1) . . . (mn + 1)
≤ c1(H) ≤

1

d− 10
29

·
4

(m1 + 1) . . . (mn + 1)

We were able to replace the formula in characters by this much more efficient

estimate using the results of Zagier.

Exact formulae for the largest and smallest strata
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For permutations ν representing the principal and the minimal strata the

characters χj(ν) admit easier computation which leads to the following

formulae:

c1(H(12g−2)) =
1

4g − 2
·

4

22g−2

c1(H(2g − 2)) =
1

2g
·

4

2g − 1
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For permutations ν representing the principal and the minimal strata the

characters χj(ν) admit easier computation which leads to the following

formulae:

c1(H(12g−2)) =
1

4g − 2
·

4

22g−2
≈

1

d
·VolH(12g−2)

c1(H(2g − 2)) =
1

2g
·

4

2g − 1
≈

1

d
·VolH(2g − 2)
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