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Ramsey theorem (basic infinite version)

Notation and definitions

▶ For any set 𝑋 and 𝑛 ∈ 𝜔 the set of all 𝑛-element subsets of 𝑋 is denoted
by [𝑋]𝑛:

[𝑋]𝑛 = {𝑥 ⊆ 𝑋 : |𝑥| = 𝑛}.

▶ A set 𝒫 ⊆ P(𝑍) is called a partition of a set 𝑍 if

1.
⋃︀

𝒫 = 𝑍, and
2. (∀𝑋,𝑌 ∈ 𝒫)𝑋 ∩ 𝑌 = ∅ ∨𝑋 = 𝑌 .

For convenience, we assume that one of the elements of the partition can
be empty.

▶ For any partition 𝒫 of [𝑋]𝑛, a set 𝑌 ⊆ 𝑋 is called homogeneous for 𝒫 if
there is a set 𝑃 ∈ 𝒫 such that [𝑌 ]𝑛 ⊆ 𝑃 .

Theorem (Ramsey, 1930)
For any 𝑛, 1 ⩽ 𝑛 < 𝜔, and finite partition 𝒫 of [𝜔]𝑛 there is an infinite set
𝑌 ⊆ 𝜔 that is homogeneous for 𝒫.



Canonical Ramsey Theorem of Erdős and Rado

Notation and definitions
▶ For any partition 𝒫 of a set 𝑍, the corresponding equivalence relation is

denoted by ≈𝒫 :
𝑥 ≈𝒫 𝑦 ⇔ (∃𝑃 ∈ 𝒫)𝑥, 𝑦 ∈ 𝑃

for all 𝑥, 𝑦 ∈ 𝑍.
▶ For any 𝑋 ⊆ 𝜔 and 𝑖 < |𝑋|, the 𝑖-th (in the natural ordering) element

𝑥 ∈ 𝑋 is denoted by 𝑋[𝑖]:

𝑥 = 𝑋[𝑖] ⇔ (𝑥 ∈ 𝑋 ∧ |𝑥 ∩𝑋| = 𝑖).

▶ Let 𝒫 be a partition of [𝜔]𝑛, 1 ⩽ 𝑛 < 𝜔, and 𝐼 ⊆ 𝑛. A set 𝑋 ⊆ 𝜔 is called
𝐼-canonical for 𝒫 if

𝑝 ≈𝒫 𝑞 ⇔
⋀︁
𝑖∈𝐼

(𝑝[𝑖] = 𝑞[𝑖])

for all 𝑝, 𝑞 ∈ [𝑋]𝑛. A set 𝑋 ⊆ 𝜔 is called canonical for 𝒫 if there is a set
𝐼 ⊆ 𝑛 such that 𝑋 is 𝐼-canonical for 𝒫.



Theorem (Erdős and Rado, 1950)
For any 𝑛, 1 ⩽ 𝑛 < 𝜔, and any partition 𝒫 of [𝜔]𝑛 there is an infinite set
𝑌 ⊆ 𝜔 that is canonical for 𝒫.

Remarks
▶ As usual, the empty conjunction is true, so any ∅-canonical set 𝑋 is

homogeneous (for any partition 𝒫 of [𝜔]𝑛).
▶ Any infinite canonical set 𝑋 ⊆ 𝜔 for a finite partition 𝒫 of [𝜔]𝑛 is

∅-canonical for 𝒫. Therefore, Ramsey Theorem (RT) immediately follows
from Canonical Ramsey Theorem (CRT).

P. Erdős, R. Rado, A combinatorial theorem. J. London Math. Soc. 25
(1950).



Reformulation in terms of functions 𝑓 : 𝜔𝑛 → 𝜔
A function 𝑓 : 𝜔𝑛 → 𝜔 is called

i. selectively injective upward on a set 𝑋 ⊆ 𝜔 w.r.t. a set (of indices) 𝐼 ⊆ 𝑛
if

𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = 𝑓(𝑦0, 𝑦1, . . . , 𝑦𝑛−1) ⇔
⋀︁
𝑖∈𝐼

(𝑥𝑖 = 𝑦𝑖)

for all 𝑥0 < 𝑥1 < . . . < 𝑥𝑛−1 and 𝑦0 < 𝑦1 < . . . < 𝑦𝑛−1 from 𝑋.

ii. selectively injective upward on a set 𝑋 ⊆ 𝜔 if it is selectively injective on a
set 𝑋 ⊆ 𝜔 w.r.t. some non-empty set of indices 𝐽 ⊆ 𝑛,

iii. constant upward on a set 𝑋 ⊆ 𝜔 if it is selectively injective on a set
𝑋 ⊆ 𝜔 w.r.t. ∅, i.e.,

𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = 𝑓(𝑦0, 𝑦1, . . . , 𝑦𝑛−1)

for all 𝑥0 < 𝑥1 < . . . < 𝑥𝑛−1 and 𝑦0 < 𝑦1 < . . . < 𝑦𝑛−1 from 𝑋.

▶ Ramsey Theorem staits that any function 𝑓 : 𝜔𝑛 → 𝑘 (where
1 ⩽ 𝑛, 𝑘 < 𝜔) is constant upward on some infinite set 𝑋 ⊆ 𝜔.

▶ Canonical Ramsey Theorem staits that any function 𝑓 : 𝜔𝑛 → 𝜔 (where
1 ⩽ 𝑛 < 𝜔) is either selectively injective upward or constant upward on
some infinite set 𝑋 ⊆ 𝜔.



In monographs, Canonical Ramsey Theorem is often cited сithout proof, or
with just the (not so representative) proof for 𝑛 = 2.

Proof (for 𝑛 = 2).
For 𝑛 = 1 the proof is trivial. We will use this case.
Let 𝑛 = 2. We will prove the following fact.

Fact
Let 𝑋 be an infinite subset of 𝜔 and 𝑓 : 𝑋2 → 𝑌 . Then there is an infinite set
𝑋 ′ ⊆ 𝑋 for which one of the four following cases holds:

i. 𝑓(𝑥0, 𝑥1) = 𝑓(𝑦0, 𝑦1) for all 𝑥0 < 𝑥1 ∈ 𝑋 ′ and 𝑦0 < 𝑦1 ∈ 𝑋 ′,

ii. 𝑓(𝑥0, 𝑥1) = 𝑓(𝑦0, 𝑦1) ⇔ 𝑥0 = 𝑦0 for all 𝑥0 < 𝑥1 ∈ 𝑋 ′ and 𝑦0 < 𝑦1 ∈ 𝑋 ′,

iii. 𝑓(𝑥0, 𝑥1) = 𝑓(𝑦0, 𝑦1) ⇔ 𝑥1 = 𝑦1 for all 𝑥0 < 𝑥1 ∈ 𝑋 ′ and 𝑦0 < 𝑦1 ∈ 𝑋 ′,

iv. 𝑓(𝑥0, 𝑥1) = 𝑓(𝑦0, 𝑦1) ⇔ (𝑥0 = 𝑦0 ∧ 𝑥1 = 𝑦1) for all 𝑥0 < 𝑥1 ∈ 𝑋 ′ and
𝑦0 < 𝑦1 ∈ 𝑋 ′.

If there is a set 𝑋 ′′ ⊆ 𝑋 and a function 𝑔 : 𝜔 → 𝜔 such that

(∀𝑥 < 𝑦 ∈ 𝑋 ′′)𝑓(𝑥, 𝑦) = 𝑔(𝑥) or (∀𝑥 < 𝑦 ∈ 𝑋 ′′)𝑓(𝑥, 𝑦) = 𝑔(𝑦),

use the case 𝑛 = 1. We will assume that this fact does not hold, and show that
there is an infinite set 𝑋 ′ ⊆ 𝑋 such that

𝑓(𝑥0, 𝑥1) = 𝑓(𝑦0, 𝑦1) ⇔ (𝑥0 = 𝑦0 ∧ 𝑥1 = 𝑦1)

for all 𝑥0 < 𝑥1 ∈ 𝑋 ′ and 𝑦0 < 𝑦1 ∈ 𝑋 ′.



We will construct the 𝑋 ′ set in three steps.

1. First, we construct an infinite set 𝑋0 ⊆ 𝑋, for which

𝑓(𝑥, 𝑥1) = 𝑔(𝑥, 𝑦1) ⇒ 𝑥1 = 𝑦1 (*)

for all 𝑥 < 𝑥1 ∈ 𝑋0 and 𝑥 < 𝑦1 ∈ 𝑋0.

To do this, we construct a sequence 𝐴0 ⊃ 𝐴1 ⊃ . . . of infinite subsets
of 𝑋 and two sequences 𝐵0 ⊆ 𝐵1 ⊆ . . . and 𝐶0 ⊆ 𝐶1 ⊆ . . . of finite
subsets of X as follows. Put 𝐴0 = 𝑋, 𝐵0 = 𝐶0 = ∅. If 𝐴0, 𝐴1, . . . , 𝐴𝑖−1,
𝐵0, 𝐵1, . . . , 𝐵𝑖−1, and 𝐶0, 𝐶1, . . . , 𝐶𝑖−1 are constructed, choose 𝑐 ∈ 𝐴𝑖−1

such that 𝑐 > max(𝐵𝑖−1 ∪ 𝐶𝑖−1). Denote 𝑍 = {𝑥 ∈ 𝐴𝑖−1 : 𝑥 > 𝑐}.
Consider the function 𝑔 : 𝑍 → 𝑌 defined by

𝑔(𝑥) = 𝑓(𝑐, 𝑥).

▶ If there is an infinite set 𝑍′ ⊆ 𝑍 such that 𝑓 ↾𝑍′ is constant, put
𝐴𝑖 = 𝑍′, 𝐵𝑖 = 𝐵𝑖−1 ∪ {𝑐}, 𝐶𝑖 = 𝐶𝑖−1.

▶ If there is an infinite set 𝑍′ ⊆ 𝑍 such that 𝑓 ↾𝑍′ is injective, put
𝐴𝑖 = 𝑍′, 𝐵𝑖 = 𝐵𝑖−1, 𝐶𝑖 = 𝐶𝑖−1 ∪ {𝑐}.

At least one of the sets 𝐵 =
⋃︀
𝑖<𝜔

𝐵𝑖 and 𝐶 =
⋃︀
𝑖<𝜔

𝐶𝑖 is infinite. The case

|𝐵| < 𝜔 contradicts the assumption. Put 𝑋0 = 𝐶. Condition (*) holds.



2. Now, we construct an infinite set 𝑋1 ⊆ 𝑋0, for which

𝑓(𝑥0, 𝑥) = 𝑔(𝑦0, 𝑥) ⇒ 𝑥0 = 𝑦0 (**)

for all 𝑥 < 𝑥1 ∈ 𝑋0 and 𝑥 < 𝑦1 ∈ 𝑋0.

To do this, we construct a sequence 𝐴0 ⊃ 𝐴1 ⊃ . . . of infinite subsets
of 𝑋0, two sequences 𝐵0 ⊆ 𝐵1 ⊆ . . . and 𝐶0 ⊆ 𝐶1 ⊆ . . . of finite subsets
of 𝑋0 and sequence 𝑃0 ⊆ 𝑃1 ⊆ . . . of equivalence relations on 𝐵0, 𝐵1, . . .
as follows. Put 𝐴0 = 𝑋0, 𝐵0 = 𝐶0 = 𝑃0 = ∅. If 𝐴0, 𝐴1, . . . , 𝐴𝑖−1,
𝐵0, 𝐵1, . . . , 𝐵𝑖−1, 𝐶0, 𝐶1, . . . , 𝐶𝑖−1, and 𝑃0, 𝑃1, . . . , 𝑃𝑖−1 are
constructed, choose 𝑐 ∈ 𝐴𝑖−1 such that 𝑐 > max𝐵𝑖−1. Put
𝐵𝑖 = 𝐵𝑖−1 ∪ {𝑐}. Denote 𝑍 = {𝑥 ∈ 𝐴𝑖−1 : 𝑥 > 𝑐}. For any 𝑏 ∈ 𝐵𝑖−1

denote 𝑍𝑏 = {𝑥 ∈ 𝑍 : 𝑓(𝑐, 𝑥) = 𝑓(𝑏, 𝑥)}.
▶ If there is an infinite set 𝑍𝑏, 𝑏 ∈ 𝐵𝑖−1, put 𝐴𝑖 = 𝑍𝑏, 𝐶𝑖 = 𝐶𝑖−1,

𝑃𝑖 = (𝑃𝑖−1 ∪ {(𝑏, 𝑐)})* where 𝑃 * is reflexive, transitive and
symmetric closure of 𝑃 .

▶ Otherwize, put 𝐴𝑖 = 𝑍 ∖
⋃︀

𝑏∈𝐵𝑖−1

𝑍𝑏, 𝐶𝑖 = 𝐶𝑖−1 ∪ {𝑐},

𝑃𝑖 = 𝑃𝑖−1 ∪ {(𝑐, 𝑐)}.
Let 𝐵 =

⋃︀
𝑖<𝜔

𝐵𝑖, 𝐶 =
⋃︀
𝑖<𝜔

𝐶𝑖, and 𝑃 =
⋃︀
𝑖<𝜔

𝑃𝑖. Either 𝐶 or one of the

𝑃 -equivalence classes is infinite. The case |𝐶| < 𝜔 contradicts the
assumption. Put 𝑋1 = 𝐶. Condition (**) holds.



3. Now let us construct the required set 𝑋 ′ ⊆ 𝑋1. Note that 𝑋1 satisfies
both conditions (*) and (**). Construct a sequences 𝐵0 ⊆ 𝐵1 ⊆ . . . of
finite subsets of 𝑋1 as follows. Let 𝐵0 ⊆ 𝑋1 be an arbitrary two-element
set. Let 𝐵𝑖−1 de constructed. Let 𝑈 = {𝑓(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐵𝑖−1, 𝑥 < 𝑦}.
Denote

𝑉 = {𝑦 ∈ 𝑋1 : 𝑦 ⩾ max(𝐵𝑖−1) ∧ (∃𝑥 ∈ 𝐵𝑖−1) 𝑓(𝑥, 𝑦) ∈ 𝑈}.

From (*) we have that any equation

𝑓(𝑎, 𝑦) = 𝑏

has at most one solution with 𝑎 < 𝑦. So, |𝑉 | < 𝜔. Choose 𝑐 ∈ 𝑋1 such
that 𝑐 ⩾ max(𝐵𝑖−1) and 𝑐 /∈ 𝑉 , and put 𝐵𝑖 = 𝐵𝑖−1 ∪ {𝑐}. Denote
𝑋 ′ =

⋃︀
𝑖<𝜔

𝐵𝑖. From (*) and (**) we have that 𝑋 ′ is a required set.

Remark
Difficulties start with 𝑛 ⩾ 3.



Background
▶ Оriginal proof: P. Erdős, R. Rado. A combinatorial theorem. J. London

Math. Soc. 25 (1950).
▶ P. Erdős, R. Rado. Combinatorial Theorems on Classifications of Subsets

of a Given Set. Proc. London Math. Soc. s3–2:1 (1952).
The modified proof also covers the finite version.

▶ R. Rado. Note on Canonical Partitions. Bul. of the London Math. Soc.
18:2 (1986).
Simplified version of the proof.

▶ H. Lefmann, V. Rödl. On Erdős-Rado numbers. Combinatorica 15 (1995).
Estimates are obtained for the Erdős-Rado numbers (analogous to the
Ramsey numbers).

▶ J. R. Mileti. The canonical Ramsey theorem and computability theory.,
Trans. Amer. Math. Soc. 360 (2008)
The author derives CRT from Koenig’s lemma. CRT is studied in the
context of reverse mathematics.

▶ P. Matet. An easier proof of the Canonical Ramsey Theorem. Colloquium
Mathematicum 145 (2016).
The author gives an elegant proof using the antilexicographical order
on [𝜔]𝑛.



Theorem (P., 2022)
For any natural number 𝑛 ⩾ 1 and partition 𝒫 of [𝜔]𝑛 there is a finite
partition 𝒬 of [𝜔]2𝑛 such that any set 𝑋 ⊆ 𝜔 that is homogeneous for 𝒬 is a
finite union of sets that are canonical for 𝒫.

Remarks
▶ CRT immediately follows from RT and this Theorem.
▶ The proof of this Theorem is quite elementary and does not use RT.

Therefore, informally speaking, we divide CRT into a Ramseyan and a
non-Ramseyan parts.

▶ This approach is particularly useful in the theory of ultrafilters.
▶ In fact, a theorem has been proven that gives a little more information.

Theorem (P., 2022)
For any natural number 𝑛 ⩾ 1 there are natural numbers 𝑘 and 𝑚 (we can put
𝑘 = 2

1
2 (

2𝑛
𝑛 )((

2𝑛
𝑛 )−1) and 𝑚 = 𝑛𝑛(2𝑛𝑛 )((

2𝑛
𝑛 )−1)) such that for any partition 𝒫 of

[𝜔]𝑛 there is a finite partition 𝒬 of [𝜔]2𝑛 of cardinality no more than 𝑘 for which
for any set 𝑄 ∈ 𝒬 there is a set 𝐼 ⊆ 𝑛 such that for any infinite set 𝑋 ⊆ 𝜔
with [𝑋]2𝑛 ⊆ 𝑄 there is a partition ℛ = {𝑅0, 𝑅1, . . . , 𝑅𝑚} of 𝑋 such that

1. the set 𝑅0 is finite of cardinality at most 𝑚,

2. for any 𝑖, 1 ⩽ 𝑖 ⩽ 𝑚, the set 𝑅𝑖 is an infinite 𝐼-canonical set for 𝒫.



Application in theory of ultrafilters
Notation and definitions
▶ An ultrafilter on P(𝑋) (or over 𝑋) is a set u ⊆ P(𝑋) such that

1. ∅ /∈ u,
2. if 𝐴 ∈ u and 𝐵 ∈ u, then 𝐴 ∩𝐵 ∈ u,
3. if 𝐴 ∈ u and 𝐴 ⊆ 𝐵, then 𝐵 ∈ u,
4. 𝐴 ∈ u or 𝑋 ∖𝐴 ∈ u

for all 𝐴,𝐵 ⊆ 𝑋.
▶ An ultrafilter u on P(𝑋) is principal if u = {𝐴 ⊆ 𝑋 : 𝑎 ∈ 𝐴} for some

𝑎 ∈ 𝑋.
▶ An ultrafilter u on P(𝜔) is called a Ramsey ultrafilter if it is nonprincipal

and for any 𝑛, 1 ⩽ 𝑛 < 𝜔, and finite partition 𝒫 of [𝜔]𝑛, u contains some
set 𝑋 ⊆ 𝜔 that is homogenous for 𝒫.

There are many equivalent characterizations of Ramsey ultrafilters. In
particular, an ultrafilter u is Ramsey if and only if it is selective, and if and only
if it is minimal (characterizations in terms of unary functions and their
ultrafilter extensions).

W.W. Comfort, S. Negrepontis. The theory of ultrafilters. Springer,
Berlin, 1974.



Definition
An ultrafilter u on P(𝜔) is selective if for every function 𝑓 : 𝜔 → 𝜔 there is
𝑋 ∈ u such that the restriction 𝑓 ↾ 𝑋 of 𝑓 to 𝑋 is either one-to-one or
constant.

The concept of a minimal ultrafilter is based on the notion of ultrafilter
extension of unary functions and the Rudin-Keisler (pre)order. For any set 𝐴,
the set of all ultrafilters on P(𝐴) is denoted by 𝛽𝐴.

Definition
For any function 𝑓 : 𝐴 → 𝐵 the ultrafilter extension ̃︀𝑓 of 𝑓 is the function from
𝛽𝐴 to 𝛽𝐵 defined by

̃︀𝑓(u) = {𝑆 ⊆ 𝐵 : (∀𝑋 ∈ u)(∃𝑥 ∈ 𝑋) 𝑓(𝑥) ∈ 𝑆}

for all u ∈ 𝛽𝐴.

Definition
The Rudin-Keisler preorder on 𝛽𝐴 is the binary relation ⩽RK defined by

u ⩽RK v ⇔ ̃︀𝑓(v) = u for some 𝑓 : 𝐴 → 𝐴

for all u, v ∈ 𝛽𝐴.



Definition
An ultrafilter u ∈ 𝛽𝐴 is called minimal if

v ⩽RK u ⇒ v is principal or u ⩽RK v

for any v ∈ 𝛽𝐴.

In other words, u is minimal if for any function 𝑓 : 𝐴 → 𝐴 either ̃︀𝑓(u) is
principal or there is a function 𝑔 : 𝐴 → 𝐴 such that ̃︀𝑔 (︁ ̃︀𝑓(u))︁ = u.

The equivalence relation ⩽RK ∩ ⩽−1
RK is denoted by ≈RK. The Rudin-Keisler

preorder naturally extends to the quotient set 𝛽𝐴/ ≈RK:

𝜏(u) ⩽RK 𝜏(v) ⇔ u ⩽RK v

for all equivalence class 𝜏(u) and 𝜏(v) of ultrafilters u and v, respectively.

The relation ⩽RK is a (partial) order on 𝛽𝐴/ ≈RK, and ultrafilter u is minimal
iff the equivalence class 𝜏(u) is a minimal element of the poset
(𝛽𝐴/ ≈RK) ∖ {𝜏(𝑎)} where 𝑎 is any principal ultrafilter on 𝐴 (all principal
ultrafilters on 𝐴 are equivalent w.r.t. ≈RK).



Ultrafilter extention of 𝑛-ary functions
Ultrafilter extensions of binary maps, especially of group and semigroup
operations, have been considered since the 60s of the 20th century. The results
obtained in this field have found numerous Ramsey-theoretic applications in
number theory, algebra, topological dynamics, and ergodic theory.
Ultrafilter extensions of arbitrary 𝑛-ary maps (and, more broadly, of first-order
models) have been introduced independently in recent works by V. Goranko
and D. I. Saveliev.

N. Hindman, D. Strauss. Algebra in the Stone–Čech Compactification.
2nd ed., revised and expanded, W. de Gruyter, Berlin–N.Y., 2012.
Springer, Berlin, 1974.

V. Goranko. Filter and ultrafilter extensions of structures:
universal-algebraic aspects. Preprint, 2007.

D. I. Saveliev. On ultrafilter extensions of models. In: S.-D. Friedman
et al. (eds.). The Infinity Project Proc. CRM Documents 11, Barcelona,
2012, 599–616.

D. I. Saveliev, S. Shelah. Ultrafilter extensions do not preserve elementary
equivalence. Math. Log. Quart., 65 (2019): 511–516.

Poliakov, N.L., Saveliev, D.I. On ultrafilter extensions of first-order models
and ultrafilter interpretations. Arch. Math. Logic 60 (2021), 625–681.



For a map 𝑓 : 𝐴𝑛 → 𝐵, the extended map ̃︀𝑓 : (𝛽𝐴)𝑛 → 𝛽𝐵 can be defined by
recursion.

Definition
▶ A nullary function 𝑓 is identified with a constant 𝑐𝑓 ∈ 𝐵. For 𝑛 = 0, we

define ̃︀𝑓 as the principal ultrafilter generated by 𝑐𝑓 , i.e.

̃︀𝑓 = {𝑆 ⊆ 𝐵 : 𝑐𝑓 ∈ 𝑆}.

▶ For 𝑛 > 0 we define

̃︀𝑓(u1, u2, . . . , u𝑛) = {𝑆 ⊆ 𝐵 : (∀𝑋 ∈ u1)(∃𝑥 ∈ 𝑋)𝑆 ∈ ̃︀𝑓𝑥(u2, . . . , u𝑛)},
where 𝑓𝑥(𝑥2, . . . , 𝑥𝑛) = 𝑓(𝑥, 𝑥2, . . . , 𝑥𝑛) for all 𝑥, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐴.

It is easy to verify that for 𝑛 = 1 we have the definition equivalent to that
given above.



The combinatorial theorem allows one to obtain a characterization of Ramsey
ultrafilters in terms of arbitrary 𝑛-ary functions and their ultrafilter extensions.

Fact
For all ultrafilters u0, u1, . . . , u𝑛−1 ∈ 𝛽𝐴 and one-to-one functions
𝑓, 𝑔 : 𝐴𝑛 → 𝐴 ultrafilters ̃︀𝑓(u0, u1, . . . , u𝑛−1) and ̃︀𝑔(u0, u1, . . . , u𝑛−1) are
RK-equivalent.
Considering ultrafilters up to equivalence relation ≈RK, we denote by

u0 × u1 × . . .× u𝑛−1

the ultrafiter ̃︀𝑓(u0, u1, . . . , u𝑛−1) for some one-to-one map 𝑓 : 𝐴𝑛 → 𝐴.

Theorem (P., 2022)
Let u be a non-principal ultrafilter on P(𝜔). Then the following conditions are
equivalent:

1. u is Ramsey ultrafilter;

2. for every 𝑛, 1 ⩽ 𝑛 < 𝜔, and partition 𝒫 of [𝜔]𝑛, u contains some set 𝑋
that is canonical for 𝒫;

3. for every 𝑛, 1 ⩽ 𝑛 < 𝜔, and function 𝑓 : 𝜔𝑛 → 𝜔, u contains some set 𝑋
such that 𝑓 is either selectively injective upward or constant upward on 𝑋;

4. for every 𝑛, 1 ⩽ 𝑛 < 𝜔, and function 𝑓 : 𝜔𝑛 → 𝜔, either ̃︀𝑓(u, u, . . . , u) is
principal or ̃︀𝑓(u, u, . . . , u) ≈RK u× u× . . .× u⏟  ⏞  

𝑚 times

for some 𝑚, 1 ⩽ 𝑚 ⩽ 𝑛.



In combinatorial applications of the theory of ultrafilters, non-principal
idempotents are of great importance. It is well known that among Ramsey
ultrafilters u there are no one such that u ̃︀+ u = u or ũ︀· u = u. It can be shown
that this property of Ramsey ultrafilters extends to any function 𝑓 : 𝜔𝑛 → 𝜔,
except for trivial cases.

Proposition (P., 2022)
Let u be a Ramsey ultrafilter on P(𝜔), and let 𝑓 : 𝜔𝑛 → 𝜔, 1 ⩽ 𝑛 < 𝜔. Theñ︀𝑓(u, u, . . . , u) = u if and only if there are 𝑋 ∈ u and 𝑖 < 𝑛 such that

𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = 𝑥𝑖

for all 𝑥0 < 𝑥1 < . . . < 𝑥𝑛−1 ∈ 𝑋.

Discussion
The shortest and most elegant proof of the Ramsey Theorem uses the
ultrafilter technique. Can combinatorial theorem (or the Canonical Ramsey
Theorem) be proved in a similar way?

D. I. Saveliev. On idempotents in compact left topological universal
algebras. Topology Proc. 43 (2014), 37–46.



Appendix: infinitary functions
Can these results be more or less extended to functions 𝑓 : 𝜔𝜔 → 𝜔?

Trivial note. Yes, if the function only depends on a finite number of arguments,
i.e.

(∃𝑛 < 𝜔)(∀𝑥,𝑦 ∈ 𝜔𝜔)𝑥↾𝑛= 𝑦 ↾𝑛⇒ 𝑓(𝑥) = 𝑓(𝑦).

Consider the set ℬ of all functions 𝑓 : 𝜔𝜔 → 𝜔 satisfying

(∀𝑥 ∈ 𝜔𝜔)(∃𝑛 < 𝜔)(∀𝑦 ∈ 𝜔𝜔)𝑥↾𝑛= 𝑦 ↾𝑛⇒ 𝑓(𝑥) = 𝑓(𝑦).

Example.
𝑓(𝑥0, 𝑥1, 𝑥2, . . .) = 𝑥1 + 𝑥2 + . . .+ 𝑥𝑥0 .

Facts.
▶ ℬ is the set of all continuous functions from the topological space (𝜔𝜔, 𝜏0)

with the base {{𝑥 ∈ 𝜔𝜔 : 𝑥↾𝑛= 𝑎} : 𝑛 ∈ 𝜔,𝑎 ∈ 𝜔𝑛} to the topological
space (𝜔, 𝜏1) with discrete topology.

D.I. Saveliev (joint work with P.). Between the Rudin–Keisler and Comfort
preorders. Report at the conference Ultramat 2022 (Pisa).
https://www.ultramath.it/



▶ The set ℬ allows an ordinal hierarchy: let

1. ℬ0 be the set of constant functions 𝑓 : 𝜔𝜔 → 𝜔, and
2. for any ordinal 𝛼 > 0, ℬ𝛼 is the set of functions 𝑓 : 𝜔𝜔 → 𝜔 such

that for any 𝑎 ∈ 𝜔 the function 𝑓𝑎(𝑥0, 𝑥1, . . .) = 𝑓(𝑎, 𝑥0, 𝑥1, . . .)
belongs to

⋃︀
𝛽<𝛼

ℬ𝛽 .

So, ℬ =
⋃︀

𝛼<𝜔1

ℬ𝛼.

▶ The ultrafilter extension of functions 𝑓 ∈ ℬ is correctly defined as follows:

i. if 𝑓 ∈ ℬ0, and 𝑓(𝑥0, 𝑥1, . . .) ≡ 𝑐, then

̃︀𝑓(u0, u1, . . .) ≡ ⟨𝑐⟩,

where ⟨𝑐⟩ = {𝑆 ⊆ 𝜔 : 𝑐 ∈ 𝑆},
ii. for any ordinal 𝛼, 0 < 𝛼 < 𝜔1,̃︀𝑓(u0, u1, u2, . . .) = {𝑆 ⊆ 𝜔 : (∀𝑋 ∈ u0)(∃𝑥 ∈ 𝑋)𝑆 ∈ ̃︀𝑓𝑥(u1, u2, . . . , )}.



The ultrafilter extension of functions can be used to prove (or re-prove) some
combinatorial results.

Definition
Let 𝑓 [𝑋] be the image of 𝑋 under 𝑓 , and let 𝐼 = {𝑥 ∈ 𝜔𝜔 : 𝑥 is increasing}.

If 𝑋 ⊆ 𝜔 and 𝑓 : 𝜔𝜔 → 𝜔 , we say that 𝑓

▶ is constant upward on 𝑋 iff |𝑓 [𝑋 ∩ 𝐼]| = 1,
▶ is quasi-invertible upward on X iff there exists 𝑔 : 𝑌 → 𝜔 such that for any

infinite 𝐴 ⊆ 𝑋 we have 𝑔(𝑓 [𝐴 ∩ 𝐼]) ⊆ 𝐴 and |𝐴 ∖ 𝑔(𝑓 [𝐴 ∩ 𝐼])| < 𝜔.

Theorem
For any function 𝑓 ∈ ℬ with |ran 𝑓 | < 𝜔 there is an infinite set 𝑋 ⊆ 𝜔 such
that 𝑓 is constant upward on 𝑋.

Theorem
For any function 𝑓 ∈ ℬ there is an infinite set 𝑋 ⊆ 𝜔 such that 𝑓 is either
constant upward or quasi-invertible upward on 𝑋.

Theorem
Let u ∈ 𝛽𝜔 be Ramsey ultrafilter. Then for any function 𝑓 ∈ ℬ there is a set
𝑋 ∈ u such that 𝑓 ∈ ℬ is either constant upward or quasi-invertible upward
on 𝑋.



THANK YOU!
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