POCCUNCKAS AKADEMUSA HAYK

S

WHCTUTYT NPOBNEM
MNEPEQAYX MUHOOPMALIUM -
HALIVOHANHBI UCCEAOBATENLCKW
nmetn A.A. Xapkesuua YHWBEPCUTET

AJIFOpI/ITMI/I‘{eCKaH CJIOZKHOCTD HEKJIaCCHUYICCKUX
JIOTUK YHapPHOI'O IIPpEAnKaTa

Muxann Peibakos
WNucturyt npobaem nepemadn nndopmaruu numenn A. A. Xapkesnua PAH
Bricmast mkosia SKOHOMUKHI

TBepcKoil rocy1apCTBEHHBII YHUBEPCUTET

Hnvurpuit [IkaTos

University of the Witwatersrand, Johannesburg

Pribaxos u Jduurpuii IlIkaTos AJormTMHYecKas CI0KHOCTH QInt



POCCUNCKAS AKADEMUSA HAYK

! !

WHCTUTYT NPOBNEM
MNEPEQAYX MUHOOPMALIUM

HALMOHATIbHbIH MCCTEROBATEbCKUM
umern A.A. Xapkesnia

YHUBEPCUTET

Computational complexity of non-classical
logics of an unary predicate

Mikhail Rybakov

Institute for Information Transmission Problems
Higher School of Economics

Tver State University

Dmitry Shkatov

University of the Witwatersrand, Johannesburg

Mikhail Rybakov and Dmitr



Motivation




Motivation

e (lassical decision problem (David Hilbert): find an algorithm
deciding validity in the classical first-order logic QCI.

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QInt

whin



Motivation

e (lassical decision problem (David Hilbert): find an algorithm
deciding validity in the classical first-order logic QCI.

e Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is
undecidable.

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QInt,,



Motivation

e (lassical decision problem (David Hilbert): find an algorithm
deciding validity in the classical first-order logic QCI.

e Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is
undecidable.

e (Classical decision problem as a classification problem: identify
the “maximal” decidable and the “minimal” undecidable
fragments of QCI.

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QInt,,



Motivation

e (lassical decision problem (David Hilbert): find an algorithm
deciding validity in the classical first-order logic QCI.

e Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is
undecidable.

e (Classical decision problem as a classification problem: identify
the “maximal” decidable and the “minimal” undecidable
fragments of QCI.

o Criteria:

e the quantifier prefix: 3*V* decidable, ¥33* undecidable;

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QInt, ¢



Motivation

e (lassical decision problem (David Hilbert): find an algorithm
deciding validity in the classical first-order logic QCI.

e Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is
undecidable.

e (Classical decision problem as a classification problem: identify
the “maximal” decidable and the “minimal” undecidable
fragments of QCI.

o Criteria:

e the quantifier prefix: 3*V* decidable, ¥33* undecidable;
e the number of variables: 2 decidable, 3 undecidable;
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Motivation

e (lassical decision problem (David Hilbert): find an algorithm
deciding validity in the classical first-order logic QCI.

e Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is
undecidable.

e (Classical decision problem as a classification problem: identify
the “maximal” decidable and the “minimal” undecidable
fragments of QCI.

o Criteria:

e the quantifier prefix: 3*V* decidable, ¥33* undecidable;

e the number of variables: 2 decidable, 3 undecidable;

e the number and arity of predicate letters: any number of monadic
decidable, a single binary undecidable.
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e Non-classical decision problem as a classification problem:
identify the “maximal” decidable and the “minimal” undecidable
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e Non-classical decision problem as a classification problem:
identify the “maximal” decidable and the “minimal” undecidable
fragments of FO modal and superintuitionistic logics.

e S. Kripke 1962 Every modal logic validated by S5 frames is
undecidable with two monadic predicate letters: write
O(Py(x) A Po(y)) for R(x,y) to obtain an embedding of an
undecidable fragment of QCL (“Kripke trick”).
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Motivation

e Non-classical decision problem as a classification problem:
identify the “maximal” decidable and the “minimal” undecidable
fragments of FO modal and superintuitionistic logics.

e S. Kripke 1962 Every modal logic validated by S5 frames is
undecidable with two monadic predicate letters: write
O(Py(x) A Po(y)) for R(x,y) to obtain an embedding of an
undecidable fragment of QCL (“Kripke trick”).
NB This result can be strenghened to one monadic letter:
e R(z,y) = O(P(z) A OP(y));
e R(z,y) — —O(P(x) A P(y)), for a sib-relation R.
e Single-variable fragments are, as a rule, decidable (K. Segerberg,
G. Fisher-Servi, H. Ono, G. Mints).

e F. Wolter and M. Zakharyaschev 2001 Monodic fragments are
decidable.
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predicate logic QInt is undecidable with a single monadic
predicate letter.

e D. Gabbay and V. Shehtman 1993 Most natural predicate
superintuitionistic logics with the constant domain axiom are
undecidable in languages with two individual variables (the proof
uses three monadic predicate letters and an unrestricted supply
of proposition letters).

e R. Konchakov, A. Kurucz, and M. Zakharyaschev 2005 QInt and
every modal logic validated by S5 frames are undecidable with
two individual variables (the proof uses two binary predicate
letters and an unrestricted supply of unary letters).
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Motivation

e S. Maslov, G. Mints, and V. Orevkov 1965 The intuitionistic
predicate logic QInt is undecidable with a single monadic
predicate letter.

e D. Gabbay and V. Shehtman 1993 Most natural predicate
superintuitionistic logics with the constant domain axiom are
undecidable in languages with two individual variables (the proof
uses three monadic predicate letters and an unrestricted supply
of proposition letters).

e R. Konchakov, A. Kurucz, and M. Zakharyaschev 2005 QInt and
every modal logic validated by S5 frames are undecidable with
two individual variables (the proof uses two binary predicate
letters and an unrestricted supply of unary letters).

e M. Rybakov, D. Shkatov 2018 QInt, as well as a number of
related logics, including those containing the constant domain
axiom, are undecidable in languages with two individual variables
and a single monadic predicate letter.
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This talk

Let Lyfin be the logic of finite (by the number of worlds) L-frames.
In this talk, we prove that:

e Every logic between QK g, and one of QS5,,5,, QGL.3,,5,,
QGrz.3,5, is not r.e. (II7-hard) in languages with three
individual variables and an unrestricted supply of unary letters.

e Every logic between QK,,;, and one of QKTB,,;,, QGL 5,
QGrz,,5, is not r.e. in languages with three individual variables
and a single unary letters.

o (The positive fragment of) every logic between QInt,, g, and
QLC,;, is not r.e. in languages with three individual variables
and an unrestricted supply of unary letters.

e (The positive fragment of ) every logic between QInt,, g, and
QKC,;, is not r.e. in languages with three individual variables
and a single unary letter.

e The same for the logics with the constant domain axiom.

NB D. Skvortsov 1995 QInt is not r.e.

wfin
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Intuitionostic formulas:
¢ = PMz1,..,zn) | L] (pA@) [ (pVe)|(@—=0) | Vz |z
Modal formulas:

@ = PMx1,...,z0) | L] (@A) [ (V)| (=) |Vrp|Idzp|Op
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Intuitionostic formulas:

@ = P™x1,...,zn) | L] (@A@) | (V)| (e—=9) | Vzp|Tze

Modal formulas:
o = PMxy,...,x0) | L] (@A) | (0Ve)| (= ¢) |V o|zep|Op

We use the standard abbreviations:

e = =L
ey = (@=P)AW = o)
<>QD = —||:|—\g0.
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Kripke semantics

Kripke frame is a pair § = (W, R); for the intuitionistic language R is
reflrxive, transitive, and antisymmetric.

Expanding domains. For a frame (W, R) consider a sysytem
(Dw)wew of non-empty sets (domains) such that

(x) wRw' = Dy C Dy.

For every w € W define a classical model 9., = (D, Ly).
For the intuitionistic case we aditionally claim:

wRw' = I,(P") C L, (P").

This gives us a first-order Kripke model 9 = (W, R, D, I) is a Kripke
model, where D = (Dy)wew and I = (Iy)wew-
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Kripke semantics

Kripke frame is a pair § = (W, R); for the intuitionistic language R is
reflrxive, transitive, and antisymmetric.

Expanding domains. For a frame (W, R) consider a sysytem
(Dw)wew of non-empty sets (domains) such that

(x) wRw' = Dy C Dy.

For every w € W define a classical model 9., = (D, Ly).
For the intuitionistic case we aditionally claim:

wRw' = I,(P") C L, (P").

This gives us a first-order Kripke model 9 = (W, R, D, I) is a Kripke
model, where D = (Dy)wew and I = (Iy)wew-

(Locally) constant domains. Replace () with cd-condition:

(%) wRw' == Dy = D,.
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Predicate Kripke frames: an example
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Predicate Kripke frames: an example
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Kripke semantics

Truth relation (intuitionistic language):

e M w =9 P(xy,...,m,) if (g(x1),...,9(z,)) € P¥;
o M w9 L;
e MwEI oA if MwEI p and M, w =9 9
e MwE oV i M wEI por Mw E9 Y
o Myw 9 o — o if M w' =9 ¢ implies M, w’ E9 9, for any w’ € R(w);
o M w =9 Iz if M w =9 o, for some ¢’ s.t. ¢’ = g and ¢/ () € Day;
o M,w =9 Voo if M,w’ =9 @, for every w' € R(w) and every ¢’
st. ¢’ = gand ¢'(z) € Dy.
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Kripke semantics

Truth relation (modal language):

e M w =9 P(xy,...,my,) if (g(x1),...,9(xn)) € P¥;

o M w9 L;

e MwEI oA if Mw EI p and M, w =9

e MwE VY if MwEI por Mw E9 Y

e M w2 o — ¢ if Mw =9 p implies M, w =9 Y,

o M w =9 Iz if M w =9 o, for some ¢’ s.t. ¢’ = g and ¢/(z) € Day;
o M w =9 Voo if Mw =9 o, for every ¢ s.t. ¢’ = g and ¢'(x) € Dy
o M, w =9 Op if M, w’ =9 ¢, for every w' € R(w).
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Kripke semantics

Truth relation (modal language):

e M w =9 P(xy,...,my,) if (g(x1),...,9(xn)) € P¥;

o M w9 L;

e MwEI oA if Mw EI p and M, w =9

e MwE VY if MwEI por Mw E9 Y

e M w2 o — ¢ if Mw =9 p implies M, w =9 Y,

o M w =9 Iz if M w =9 o, for some ¢’ s.t. ¢’ = g and ¢/(z) € Day;
o M w =9 Voo if Mw =9 o, for every ¢ s.t. ¢’ = g and ¢'(x) € Dy
o M, w =9 Op if M, w’ =9 ¢, for every w' € R(w).

e MwE p(xy,...,z,) i M w EI o(21,...,2,), for every g such
that g(xl)w‘ c ag(xn) € Dy;

M = @ if M, w = ¢, for every w € W;
¢ if M |= ¢, for every model M based over §.
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Logics




The logics under consideration are:

e QCI, the classical predicate logic;

QCly,,, the classical logic of finite models;

QK, the modal logic of all frames;

QL = QK & L, for a normal modal propositional logic L;

QInt, the logic of all intuitionistic frames;

QLC, the logic of linear intuitionistic frames;

QKC, the logic of convergent intuitionistic frames;

L yfin, the logic of all finite frames of L;

L.cdfy,, the logic of all finite frames of L with cd-condition.
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L yfin, the logic of all finite frames of L;
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Clearly, QInt ¢ QKC c QLC ¢ QCL

Let QCIE?Q(S) be the positive fragment of QClg,, with three
variables and predicate letters of arity at most two.
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The logics under consideration are:

e QCI, the classical predicate logic;

QCly,,, the classical logic of finite models;

QK, the modal logic of all frames;

QL = QK & L, for a normal modal propositional logic L;

QInt, the logic of all intuitionistic frames;

QLC, the logic of linear intuitionistic frames;

QKC, the logic of convergent intuitionistic frames;

L yfin, the logic of all finite frames of L;
o L.cdfn, the logic of all finite frames of L with cd-condition.

Clearly, QInt ¢ QKC c QLC ¢ QCL

Let QCIE?Q(S) be the positive fragment of QClg,, with three
variables and predicate letters of arity at most two.

It is known that QCI;HQ(Z&) is T19-complete.
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Embedding of QC1} <*(3) into QK
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Embedding of QClJr,,fz(B) into QK4

Let ¢ be a classical formula (in the language of QC];TLQ(S)).
Let

A = YaOT(x);

Ay = VaVy(z =~y < 0T (z) < T(y)))

Observe that A, implies that ~ is an equivalence relation.

Let A= A; A As and let Congr be the formula asserting that =~ is a
congruence with respect to the predicate letters of ¢, i.e., a
conjunction of formulas

Vavy (z =y = (P(z) = P(y)));
Vavyvz (z =y = ((S(z,2) = 5(2,9)) A (S(x,2) = 5(y,2))),

where P ranges over the monadic, and S binary, predicate letters of .
Lastly, let
©=ANCongr — .

Observe that @ contains three individual variables.
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Embedding of QC1} <*(3) into QK
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Embedding of QClJr,,fz(B) into QK4

Lemma

Let L € {QK, QS5,QGL.3,QGrz.3}. The following statements are
equivalent:

(2) @ S Lwﬁn;
(3) (RS L.deﬁn.
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Embedding of QCIJF"Q(S) into QK4

Lemma

Let L € {QK, QS5,QGL.3,QGrz.3}. The following statements are
equivalent:

(1) ¢ € QClg,;

(2) P € Lufin;

(3) ¥ € L.cdyfin-

Theorem

Every logic in [QK ,5,, QGL.3.cd, 5], [QK 5, QGrz.3.cd 5],
and [QK 5, QS5,,5,] is 11-hard in languages with three individual
variables and predicate letters of arity at most two.
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Eliminating of binary letters
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Eliminating of binary letters

Let P be a binary predicate letters of .
Let Q1 and Q> be monadic predicate letters, not occurring in @.

Lastly, let -7 be the function substituting ¢(Q1(x) A Q2(y)) for
P(z,y).

Lemma

The following statements are equivalent:
(1) v € QClg,;

(2) @U € QKwﬁn;

(3) 7 € QK.cd 5, -

Proof.

(1) = (2) = (3) are clear.
We explain (3) = (1) as =(1) = —(3).
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Eliminating of binary letters
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Eliminating of binary letters

—(1) = —(3):

Assume ¢ € QClg,,. Then, p lf ¢, for some classical model u = (D, T)
with D = {ag, a1, ..., a,}. We define a QK.cd,,;,-model 9 and show
that 9%, w [~ @, for some w € W.
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Eliminating of binary letters

—(1) = —(3):

Assume ¢ € QClg,,. Then, p lf ¢, for some classical model u = (D, T)
with D = {ag, a1, ..., a,}. We define a QK.cd,,;,-model 9 and show
that 9%, w [~ @, for some w € W.

Idea:

Wayan

Wo

We want: wep = Q1(c) AQ2(d) <= c=a,d=0b,u = P(a,b).
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Eliminating of binary letters

—(1) = —(3):

Assume ¢ € QClg,,. Then, p lf ¢, for some classical model u = (D, T)
with D = {ag, a1, ..., a,}. We define a QK.cd,,g,-model 9 and show
that 9%, w [~ @, for some w € W. Let

W = {wo} U{we : a,b € D};
R = {{wo, wap) : a,b € D};
D,, =D, for every w € W,

and let I = (I,)wew be defined so that

wep =T(c) = ¢ =aq;

wo Eas xap = s =1t

Iy, (P) = Z(P), for every predicate letter P of ¢;
wap | Q1(c) = ¢ = q;

wap = Q2(c) = c=0band p = P(a,b);

Finally, let M = (W, R, D, I).
Then, wy ¥~ @. a
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Single unary letter: modal language
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Single unary letter: modal language
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Single unary letter: modal language

Let Ap(z) = —P(z) AOCOLAOMOLAOFP(2).

Then the formula A (x) simulates Py (x) at the world w.
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Single unary letter: modal language
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Single unary letter: modal language

Theorem

Logics QK 5, and QK.cd,z, are 19 -complete in the language with a
single unary predicate letter and three individual variables.
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Single unary letter: modal language

Theorem

Logics QK 5, and QK.cd,z, are 19 -complete in the language with a
single unary predicate letter and three individual variables.

Theorem

Logics QLyfin and QL.cd gy, are 19-hard in the language with a
single unary predicate letter and three individual variables, for any L
containing K and contained in one of GL, Grz, KTB.
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results




Some results

e Let L be a logic containing QK and contained in QGL & bf or
QGrz® bf or QKTB @ bf. Then L is XY-hard in the language

with a single unary predicate letter and two individual variables.
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Some results

e Let L be a logic containing QK and contained in QGL & bf or
QGrz® bf or QKTB @ bf. Then L is XY-hard in the language
with a single unary predicate letter and two individual variables.

e Let L be a logic containing QK and contained in QS5. Then L
is 39-hard in the language with a two unary predicate letters,
two individual variables, and infinitely many proposition letters.
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Some results

e Let L be a logic containing QK and contained in QGL & bf or
QGrz® bf or QKTB @ bf. Then L is XY-hard in the language
with a single unary predicate letter and two individual variables.

e Let L be a logic containing QK and contained in QS5. Then L
is 39-hard in the language with a two unary predicate letters,
two individual variables, and infinitely many proposition letters.

o Let § = (IN, R), where R is a relation between < and <. Then the
logic of § is ITi-hard in the language with a single unary predicate
letter, single proposition letter, and two individual variables.
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results




Some results

e The logic of finite frames of a logic contained in QGL & bf,
QGrz ® bf or QKTB @ bf is I1{-hard in the language with a
single unary predicate letter and three individual variables.
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Some results

e The logic of finite frames of a logic contained in QGL & bf,
QGrz ® bf or QKTB @ bf is I1{-hard in the language with a
single unary predicate letter and three individual variables.

e Let L be a logic containing QwGrz and contained in
QGL.3D bf or QGrz.3 ® bf. Then the logic of L-frames is
IT-hard in the language with a single unary predicate letter,
single proposition letter, and two individual variables.
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Some results

e The logic of finite frames of a logic contained in QGL & bf,
QGrz ® bf or QKTB @ bf is I1{-hard in the language with a
single unary predicate letter and three individual variables.

e Let L be a logic containing QwGrz and contained in
QGL.3D bf or QGrz.3 ® bf. Then the logic of L-frames is
IT-hard in the language with a single unary predicate letter,
single proposition letter, and two individual variables.

e Predicate counterparts of CTL*, CTL, LTL, ATL*, ATL are
I[T}-hard in the language with a single unary predicate letter and
two individual variables.
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Embedding of QCIJ?,IQ(?)) into QInt;:ﬁn,
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Embedding of Qlefz( ) into QInt wfin

We construct an embedding of QCI+ <2 (3) into positive fragment of
any logic L between QInt,,;, and QLC cd,yfp -
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Embedding of QCIELQ( ) into QInt wfin

We construct an embedding of QCI+ <2 (3) into positive fragment of
any logic L between QInt,,;, and QLC cd,yfp -

Let
Min(x) = VYy(z<yVz=y);
Mazx(z) = Vy(y<x);
x<dy = x<YAVz(z<zAz<y—z=xy).
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Embedding of QCIJ?,IQ(?)) into QInt;:ﬁn,

We construct an embedding of QCI;EZ(?)) into positive fragment of
any logic L between QInt,,;, and QLC.cd,g,-

Let

Min(x) = VYy(z<yVz=y);

Mazx(z) = Vy(y<x);

x<dy = x<YAVz(z<zAz<y—z=xy).

Define

Ay = Vady(zay);

Ay = 3x Min(x);

As = JxMax(z);

Ay = VaVyVz (e <yAy<z— 2 <2);

As = VaVy(z<yVy<zVz=xy);

Ag = VaVy(x <yAy <z —x=y);

Ay = VaVy(xz <yAz~y— Max(z));

Ag = VaVy ((T(z) > T(y)) >z <yVzx=xy);

Ag = VaVy(z <y — (T(z) = T(y)))-

Let A be a conjunction of formulas A; through Ag.




Embedding of QCIELQ( ) into QInt wfin

We construct an embedding of QCI+ <2 (3) into positive fragment of
any logic L between QInt,, g, and QLC cd,fp -

Also let
By = Vavyvz A (¢—=v);
pEsub(p)
By = Vavyvz A (V@ —q),
pEsub(p)

and let B = B; A Bs.
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Embedding of QCIJ?,IQ(?)) into QInt;:ﬁn,

We construct an embedding of QCI;EZ(?)) into positive fragment of
any logic L between QInt,,;, and QLC.cd,g,-

Also let
By = Vavyvz A (¢—=v);
pEsub(p)
By = Vavyvz A (V@ —q),
pEsub(p)

and let B = B; A Bs.

Let C' be a conjunction of the formulas
Ve(zxma) AVaVy (e my sy~ z) AVaVyVz (e Ry Ay~ z = z = 2);
Vavy (z =~y — (P(z) — P(y)));
VaVyVz (z =y — ((S(z,2) = S(z,9)) A (S(z, 2) = S(y, 2))),

where P ranges over the monadic, and S binary, predicate letters of .
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Embedding of Qlefz( ) into QInt wfin

We construct an embedding of QCI+ <2 (3) into positive fragment of
any logic L between QInt,, g, and QLC cd,fp -

Finally, let
o = AANBAC — .
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Embedding of QCIJ?,LQ( ) into QInt wfin

We construct an embedding of QCI+ <2 (3) into positive fragment of
any logic L between QInt,, g, and QLC cd,fp -

Finally, let
o = AANBAC — .

Lemma

Let L € {QInt, QLC}. The following statements are equivalent:
(1) ¢ € QCl,;

(2) @ € Lufin;

(3) ¥ € L.cdyfin-
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Embedding of QCIJF,HQ( ) into QInt; wfin

We construct an embedding of QCI+ <2 (3) into positive fragment of
any logic L between QInt,, g, and QLC cd,fp -

Finally, let
o = AANBAC — .

Lemma

Let L € {QInt, QLC}. The following statements are equivalent:
(1) ¢ € QClg,;

(2) @ € Lufin;

(3) ¥ € L.cdyfin-

Proof.
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Embedding of QCIJF,HQ( ) into QInt; wfin

We construct an embedding of QCI+ <2 (3) into positive fragment of
any logic L between QInt,, g, and QLC cd,fp -

Finally, let

» = AANBAC — .

Lemma

Let L € {QInt, QLC}. The following statements are equivalent:
(1) ¢ € QClg,;

(2) @ € Lufin;

(3) ¥ € L.cdyfin-

Proof.
(2) = (3): obvious.
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Embedding of QCIJF,,1§2(3) into QInt;:ﬁn,

We construct an embedding of QCI;EZ(?)) into positive fragment of
any logic L between QInt,,;, and QLC.cd,g,-

Finally, let
o = AANBAC — .

Lemma

Let L € {QInt, QLC}. The following statements are equivalent:
(1) ¢ € QClg,;

(2) @ € Lufin;

(3) ¥ € L.cdyfin-

Proof.
(2) = (3): obvious.
(1) = (2): technical.
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Embedding of QCIJF,,1§2(3) into QInt;:ﬁn,

We construct an embedding of QCI;EZ(?)) into positive fragment of
any logic L between QInt,,;, and QLC.cd,g,-

Finally, let
o = AANBAC — .

Lemma

Let L € {QInt, QLC}. The following statements are equivalent:
(1) ¢ € QClg,;

(2) @ € Lufin;

(3) ¥ € L.cdyfin-

Proof.

(2) = (3): obvious.

(1) = (2): technical.

(3) = (1): we need it; we prove —(1) = —(3).

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QInt,,



Embedding of QCIJ?,IQ(?)) into QInt;:ﬁn,

—(1) = =(3):
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Embedding of QCIJF,,1§2(3) into QInt;:ﬁn,

—(1) = —=(3):

Assume ¢ & QClg,,. Then, plff ¢, for some classical model p = (D, T)
with D = {ag, a1, ...,a,}. We define a QLC.cd,,;,-model 9 and
show that M, w [~ @, for some w € W. Let

o W ={wo,ws,...,wy};

o R= {{wg,wr—1) : 1 < k< n}

e D, =D, for every w € W,
and let I = (I,,)wew be defined so that

o wy =T(as) =k < s

e wy = as < a; = either s <t or both s > k and ¢ > k;

e wi | as ~ a; = either s =t or both s > k and t > k;

cwyEqg=sk#En

e [, (P)=1Z(P), for every predicate letter P of y;

o [, (P)=D™, for every k # n and m-ary predicate letter P of ¢.
Finally, let 90t = (W, R, D, I). Evidently, I satisfies the heredity
condition; therefore, 9 is a QLC.cd,,f,,-model.

Then, w, ¥~ . O
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Embedding of Qlefz(B) into QInt '

wfin

Wn—1

a a a a
Wy, 0 " '
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Embedding of QClJr,,fz(B) into QInt '

wfin

Theorem

Every logic between QInt,q. and QLC.cd,g, is I19-hard and
¥9-hard in languages with three individual variables and predicate
letters of arity at most two.
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Embedding of QCIJF"Q(S) into QInt '

wfin

Theorem

Every logic between QInt,, ., and QLC.cd, g, s I10-hard and
¥9-hard in languages with three individual variables and predicate
letters of arity at most two.

Thus, many predicate superintuitionistic logics of natural classes of
finite Kripke frames are neither recursively enumerable nor
co-recursively enumerable in such languages:

Corollary

Let L € {QInt, QKP,QLM, QKC, QLC}.

Then, Luyfin and L.cdyp, are both 119-hard and X9-hard in languages
with three individual variables and predicate letters of arity at most
two.
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Elimination of binary predicate letters
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Elimination of binary predicate letters

Let Py,..., P, be the binary predicate letters of .

Let F1,G, ..., Fy, Gy, be distinct monadic predicate letters, and
D1,T1, - -, Pm, Tm distinet proposition letters, not occurring in @.

Lastly, let -7 be the function substituting (F;(z) A G;(y) = pj) V r;
for P;(z,y), for each j € {1,...,m}, in @.
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Elimination of binary predicate letters

Let Py,..., P, be the binary predicate letters of .

Let F1,G, ..., Fy, Gy, be distinct monadic predicate letters, and
D1,T1, - -, Pm, Tm distinet proposition letters, not occurring in @.

Lastly, let - be the function substituting (Fj(z) A G;(y) — p;) V. r;
for Pj(x7y)v for each j € {17 cee m}, in p.

Lemma

Let L € {QInt, QKC}. The following statements are equivalent:
(1) ¢ € QCly,;

(2) 97 € Lofin;

(3) ®7 € L.cdyfin.

Proof. Similar to Kripke trick. O
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Elimination of binary predicate letters
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Elimination of binary predicate letters

Let ¢1,...,qn be the proposition letters of 7 and let Q,...,Q,, be
distinct monadic predicate letters not occurring in 7. Let 7 be the
result of substituting 3z Q;(z) for ¢;, for each i € {1,...,m}, in 7.

Corollary

Let L € {QInt, QKC}. The following statements are equivalent:
(1) ¢ € QClg,;

(2) 5# € Lufin;

(3) P* € L.cdyfin.

We, therefore, obtain the following:

Theorem

Every logic between QInt,, ¢, and QKC.cd, g, is I1Y-hard in
languages with three individual variables and only monadic predicate
letters.
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Elimination of monadic predicate letters
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Elimination of monadic predicate letters

Let P, ..., P, be the (monadic) predicate letters of z#. We assume
that s > 2—otherwise, 3" already has the required form. Let P be a
monadic predicate letter distinct from P, ..., Ps.

We begin by defining a finite predicate frame §o = (Wp, Ro) and some
special model with cd-condition on it defined for an individual a; we
assume that the domain of the model contains at least three element;
we refer to such a model as a-suitable.

30 / 48
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Elimination of monadic predicate letters
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Elimination of monadic predicate letters

First, we define formulas associated with the worlds of the three
top-most levels:

D,

wllw)

w N

= 8 8 8] 8

— e N N ~— — — — ~ ~—

8

8

SPRS]

WHRN R RWHENDHR- NOFONOHO
8

A/-\/-\/\%\/\ —~ e~

A
A
B
B
A
A
A
B
B
B

8

Sl

Jz P(z) — P(x);
P(z) — Va P(x);
DQ(J,‘) — D1V D3(.T);
D3(ZIJ) — D1V DQ(LE);
Dl — DQ(.’E) V D3($),

= 0 by




Elimination of monadic predicate letters

We proceed by recursion. Assume formulas associated with the worlds
of level k, where k > 1, have been defined. Let i, j and m be as in the
definition of frame §y above; put

Arfi(z) = Af(z) - Bi(z) Vv Al(z) Vv BY ();
Byil(z) = Br(z) — Af(z)V Af(z) v By ().
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Elimination of monadic predicate letters
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Elimination of monadic predicate letters

Lemma

Let N, be an a-suitable model with a constant domain A. Then,

Na,w E AR (a) <= wRyak;
Na,w E BE(a) <= wRyBE,.
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Elimination of monadic predicate letters

Lemma

Let N, be an a-suitable model with a constant domain A. Then,

Na,w E AR (a) <= wRyak;
Na,w E BE(a) <= wRyBE,.

Lemma

Let M, be an a-suitable model with a constant domain A and let
be A—{a}. Then, for every w € Wy and every k > 2,

No,w = AE (b)) and N, w = BE(b).
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Elimination of monadic predicate letters
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Elimination of monadic predicate letters

Let (")’ be the result of substituting into @*, for each r € {1,...,s},

Astl(x) v Bstl(z) for P.(z).

Lemma

Let L € {QInt, QKC}. The following statements are equivalent:
(2) @*) € Lugn;

(3) (@*) € L.cdyfin-
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Elimination of monadic predicate letters

Let (")’ be the result of substituting into @*, for each r € {1,...,s},

Astl(x) v Bstl(z) for P.(z).

Lemma

Let L € {QInt, QKC}. The following statements are equivalent:
(2) @*) € Lugn;

(3) (@*) € L.cdyfin-

Proof.

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QInt,,



Elimination of monadic predicate letters

Let (")’ be the result of substituting into @*, for each r € {1,...,s},

Astl(x) v Bstl(z) for P.(z).

Lemma

Let L € {QInt, QKC}. The following statements are equivalent:
(2) @*) € Lugn;

(3) (@*) € L.cdyfin-

Proof.
(1) = (2) = (3): obvious.
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Elimination of monadic predicate letters

Let (")’ be the result of substituting into @*, for each r € {1,...,s},

Astl(x) v Bstl(z) for P.(z).

Lemma

Let L € {QInt, QKC}. The following statements are equivalent:
(2) @*) € Lugn;

(3) (@*) € L.cdyfin-

Proof.
(1) = (2) = (3): obvious.
(3) = (1): we prove it as =(1) = —(3).
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Elimination of monadic predicate letters

Case QInt.cd,z,:

Assume ¢ ¢ QClg,,. Then IM#, w, [ @7, where M# is the model
constructed on finite linear model 9t with cd-condition: the domain
of any its world is D = {ag, a1, ..., a,}; we may assume that D
contains at least three elements.

We use 9M# to obtain a finite intuitionistic Kripke model with a
constant domain refuting (%)’

For every a € D, let §* = ({a} x W, R*) be an isomorphic copy of
the frame §o under the isomorphism f: v — (a,v).

Let
W"” = W' U (D x W).

Since W', D and W are finite, so is W".
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Elimination of monadic predicate letters

Let S be the smallest relation on W’ such that
e RRCS;

e |J R*CS;
a€D

e for every w € W/, every v € W — W', every a € D and every
ref{l,...,s},

wSv = either v € {{a,as™), (a,B51)} and M, w £ P,(a)
or v € {{a, 0 f1), (o, B}

and let R” be the reflexive transitive closure of S.

Let D" (u) = D, for every u € W".
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Elimination of monadic predicate letters

Let I"” be an interpretation on (W”, R” D") such that, for every

a €D,
e I\ 5, (P) =D —{a};
° IZ; 54) (P) ={d'}, where ¢’ = (¢ + 1) mod |D|;
o Il 5, (P) ={a,a’}, where o’ = (a + 1) mod |DJ;

I{, 0y (P) = {a'}, where a’ = (a+ 1) mod |DJ;
° L/L/(P) = dJ, forue W — {<Cv 52>, <C, 5é>, <Ca 53>7 <C’ ﬂ(l)> e D}

Finally, let 0 = (W", R", D", 1").

Evidently, I satisfies the heredity condition; hence, 9" is an
intuitionistic Kripke model.

Observe that, for any a € D, the submodel of 9" generated by the set

{{la,0q™), .. {a, 03t ) (e, B77Y), - (o, BT}

is an a-suitable model based on a frame isomorphic, under the
isomorphism f: v — (a,v), to Fo.
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Elimination of monadic predicate letters

Sublemma
For every w € W' and a € D,

M’ w e Aj(a) and M’ w £ Bi(a).
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Elimination of monadic predicate letters

Sublemma
For every w € W' and a € D,

M’ w e Aj(a) and M’ w £ Bi(a).

Sublemma

M, v [=9 4/, for every ¢ € sub(p?), every v € W"” — W' and every
assignment g.
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Elimination of monadic predicate letters

Sublemma
For every w € W' and a € D,

M’ w e Aj(a) and M’ w £ Bi(a).

Sublemma

M, v [=9 4/, for every ¢ € sub(p?), every v € W"” — W' and every
assignment g.

We now show that MM, w,, % (7).

To that end, we prove that, for every w € W', every 0 € sub(") and
every assignment g,

M wEIl = M wEIo.
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Elimination of monadic predicate letters

Let 0 = P.(z), and so ¢’ = As*1(x) Vv B5T1(z), for some r € {1,...,s}.
Assume MM w [~ P.(a). By definition of 9", both wR"(a, as*!) and
wR"(a, B7H1).

Then, both M (a, ast1) B AsH(a) and M, (a, B5TY) £ Bit(a).
Hence, by heredity, 9", w £ AsT(a) and M, w = BSH(a).
Therefore, M” w £ AST(a) V BET(a).
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Elimination of monadic predicate letters

Conversely, assume I, w [~ A3t (a) vV B:*t!(a). Then,
M’ w B AsT(a) and M, w = BT (a). Hence, there exist
u',u” € W and i, (corresponding to r) such that v, u” € w?t and

u' | Aj(a); W' Bi(a); o Ai(a); '~ Bj(a);
u” = Bi(a); u'[E Aj(a); u” E Af(a); u” = Bj(a)

We show that v/ = (a,as*!) and v” = (a, B3T1).

Since v’ |= A$(a) and u” |= B3 (a), by the first sublemma,

u',u” € W — W', Therefore, from u' [~ B5(a) and u” = A5 (a) we
obtain that v/, u” € {a} x Wy. Hence,

), W R"a,a7); u'R'(a,B3);

% w'R'(aaf R {a, B,
Now, in §p, and hence in §%, only worlds of level s + 1 see more than
one world of level s. Therefore, v’ and u” are worlds of level s + 1.
Then, v’ = {a,a3*), v = (a, B5*!), and wR"(a, a1y, wR" (a, B5T1).
Hence, by definition of R”, we obtain IMM#*, w [~ P.(a).
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Elimination of monadic predicate letters

The cases =V x, 0 = ¥ A x and 0 = Jx 1) are straightforward.

Assume IMM# w =9 ¢ — x. Then, M# v =9 ¢ and M#, v £ , for
some v such that wR'v (and so wR'v).

By inductive hypothesis, 9" v =9 ¢' and M” v £9 /.

Therefore, M, w I ' — x'.

Conversely, assume MM, w 9 ' — x'. Then, M” v E9 ¢’ and
M v 9, for some v such that wRv.

By the second sublemma, v € W', and so wR'v.

Hence, by inductive hypothesis, 9#, v =9 1) and I, v I .
Therefore, IM*, w =9 ¢ — .
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Elimination of monadic predicate letters

Assume ¥, w =9 Vo ).

Then, M#, v £9" 1, for some v such that wR'v (and so wR"v) and
some ¢’ such that ¢’ = g.

By inductive hypothesis, ", v =9 . Therefore, M, w 9 Va 1.

Conversely, assume I, w 9 Vo i)'.

Then, M, v 9 ¢/, for some v such that wR”v and some ¢’ such
that ¢’ = g.

By the second sublemma, v € W, and so wR/v.

Hence, by inductive hypothesis, 97, v [#9/ .

Therefore, IM*, w =9 V1.

This completes the induction.

Since w, € W', it follows from the claim proven by induction that
M, wy, = (@), Therefore, (%) ¢ Qlnt.cd,,g,.
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Elimination of monadic predicate letters

Assume ¥, w =9 Vo ).

Then, M#, v £9" 1, for some v such that wR'v (and so wR"v) and
some ¢’ such that ¢’ = g.

By inductive hypothesis, ", v =9 . Therefore, M, w 9 Va 1.

Conversely, assume I, w 9 Vo i)'.

Then, M, v 9 ¢/, for some v such that wR”v and some ¢’ such
that ¢’ = g.

By the second sublemma, v € W, and so wR/v.

Hence, by inductive hypothesis, 97, v [#9/ .

Therefore, IM*, w =9 V1.

This completes the induction.

Since w, € W', it follows from the claim proven by induction that
M, wy, = (@), Therefore, (%) ¢ Qlnt.cd,,g,.

Case QKC.cd, g, just add a top point to 9. O
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Elimination of monadic predicate letters

We, thus, obtain the following:

Theorem

Every logic between QInt,,z, and QKC.cd, g, is I9-hard in
languages with three individual variables and a single monadic
predicate letter.
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Elimination of monadic predicate letters

In particular, we obtain the following:

Corollary

Let L € {QInt, QKP,QLM, QKC}. Then, Lysy, and L.cdg, are
I1Y-hard in languages with three individual variables and a single
monadic predicate letter.

Since every consistent propositional superintuitionistic logic distinct
from the classical propositional logic Cl and axiomatized by a formula
with a single proposition letter is a sublogic of KC [Nishimura, 1960],
our theorem also implies the following:

Corollary

Let L = Int + ¢, where ¢ is a formula with a single proposition letter,
and let L C Cl. Then, QL.f, and QL.cdyp, are 9-hard in
languages with three individual variables and a single monadic
predicate letter.
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