Алгоритмическая сложность неклассических логик унарного предиката

Михаил Рыбаков

Институт проблем передачи информации имени А. А. Харкевича РАН
Высшая школа экономики
Тверской государственный университет

Дмитрий Шкатов

University of the Witwatersrand, Johannesburg

Computational complexity of non-classical logics of an unary predicate

Mikhail Rybakov
Institute for Information Transmission Problems
Higher School of Economics
Tver State University
\section*{Dmitry Shkatov}
University of the Witwatersrand, Johannesburg

Motivation

Motivation

- Classical decision problem (David Hilbert): find an algorithm deciding validity in the classical first-order logic $\mathbf{Q C l}$.

Motivation

- Classical decision problem (David Hilbert): find an algorithm deciding validity in the classical first-order logic $\mathbf{Q C l}$.
- Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is undecidable.

Motivation

- Classical decision problem (David Hilbert): find an algorithm deciding validity in the classical first-order logic $\mathbf{Q C l}$.
- Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is undecidable.
- Classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of QCl .

Motivation

- Classical decision problem (David Hilbert): find an algorithm deciding validity in the classical first-order logic $\mathbf{Q C l}$.
- Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is undecidable.
- Classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of $\mathbf{Q C l}$.
- Criteria:
- the quantifier prefix: $\exists^{*} \forall^{*}$ decidable, $\forall^{3} \exists^{*}$ undecidable;

Motivation

- Classical decision problem (David Hilbert): find an algorithm deciding validity in the classical first-order logic $\mathbf{Q C l}$.
- Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is undecidable.
- Classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of $\mathbf{Q C l}$.
- Criteria:
- the quantifier prefix: $\exists^{*} \forall^{*}$ decidable, $\forall^{3} \exists^{*}$ undecidable;
- the number of variables: 2 decidable, 3 undecidable;
- Classical decision problem (David Hilbert): find an algorithm deciding validity in the classical first-order logic $\mathbf{Q C l}$.
- Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is undecidable.
- Classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of $\mathbf{Q C l}$.
- Criteria:
- the quantifier prefix: $\exists^{*} \forall^{*}$ decidable, $\forall^{3} \exists^{*}$ undecidable;
- the number of variables: 2 decidable, 3 undecidable;
- the number and arity of predicate letters: any number of monadic decidable, a single binary undecidable.

Motivation

Motivation

- Non-classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of FO modal and superintuitionistic logics.
- Non-classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of FO modal and superintuitionistic logics.
- S. Kripke 1962 Every modal logic validated by S5 frames is undecidable with two monadic predicate letters: write $\diamond\left(P_{1}(x) \wedge P_{2}(y)\right)$ for $R(x, y)$ to obtain an embedding of an undecidable fragment of QCL ("Kripke trick").
- Non-classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of FO modal and superintuitionistic logics.
- S. Kripke 1962 Every modal logic validated by S5 frames is undecidable with two monadic predicate letters: write $\diamond\left(P_{1}(x) \wedge P_{2}(y)\right)$ for $R(x, y)$ to obtain an embedding of an undecidable fragment of QCL ("Kripke trick").
NB This result can be strenghened to one monadic letter:
- $R(x, y) \mapsto \diamond(P(x) \wedge \diamond P(y))$;
- $R(x, y) \mapsto \neg \diamond(P(x) \wedge P(y))$, for a sib-relation R.
- Non-classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of FO modal and superintuitionistic logics.
- S. Kripke 1962 Every modal logic validated by S5 frames is undecidable with two monadic predicate letters: write $\diamond\left(P_{1}(x) \wedge P_{2}(y)\right)$ for $R(x, y)$ to obtain an embedding of an undecidable fragment of QCL ("Kripke trick").
NB This result can be strenghened to one monadic letter:
- $R(x, y) \mapsto \diamond(P(x) \wedge \diamond P(y))$;
- $R(x, y) \mapsto \neg \diamond(P(x) \wedge P(y))$, for a sib-relation R.
- Single-variable fragments are, as a rule, decidable (K. Segerberg, G. Fisher-Servi, H. Ono, G. Mints).
- Non-classical decision problem as a classification problem: identify the "maximal" decidable and the "minimal" undecidable fragments of FO modal and superintuitionistic logics.
- S. Kripke 1962 Every modal logic validated by S5 frames is undecidable with two monadic predicate letters: write $\diamond\left(P_{1}(x) \wedge P_{2}(y)\right)$ for $R(x, y)$ to obtain an embedding of an undecidable fragment of QCL ("Kripke trick").
NB This result can be strenghened to one monadic letter:
- $R(x, y) \mapsto \diamond(P(x) \wedge \diamond P(y))$;
- $R(x, y) \mapsto \neg \diamond(P(x) \wedge P(y))$, for a sib-relation R.
- Single-variable fragments are, as a rule, decidable (K. Segerberg, G. Fisher-Servi, H. Ono, G. Mints).
- F. Wolter and M. Zakharyaschev 2001 Monodic fragments are decidable.

Motivation

Motivation

- S. Maslov, G. Mints, and V. Orevkov 1965 The intuitionistic predicate logic QInt is undecidable with a single monadic predicate letter.
- S. Maslov, G. Mints, and V. Orevkov 1965 The intuitionistic predicate logic QInt is undecidable with a single monadic predicate letter.
- D. Gabbay and V. Shehtman 1993 Most natural predicate superintuitionistic logics with the constant domain axiom are undecidable in languages with two individual variables (the proof uses three monadic predicate letters and an unrestricted supply of proposition letters).
- S. Maslov, G. Mints, and V. Orevkov 1965 The intuitionistic predicate logic QInt is undecidable with a single monadic predicate letter.
- D. Gabbay and V. Shehtman 1993 Most natural predicate superintuitionistic logics with the constant domain axiom are undecidable in languages with two individual variables (the proof uses three monadic predicate letters and an unrestricted supply of proposition letters).
- R. Konchakov, A. Kurucz, and M. Zakharyaschev 2005 QInt and every modal logic validated by S5 frames are undecidable with two individual variables (the proof uses two binary predicate letters and an unrestricted supply of unary letters).

Motivation

- S. Maslov, G. Mints, and V. Orevkov 1965 The intuitionistic predicate logic QInt is undecidable with a single monadic predicate letter.
- D. Gabbay and V. Shehtman 1993 Most natural predicate superintuitionistic logics with the constant domain axiom are undecidable in languages with two individual variables (the proof uses three monadic predicate letters and an unrestricted supply of proposition letters).
- R. Konchakov, A. Kurucz, and M. Zakharyaschev 2005 QInt and every modal logic validated by $\mathbf{S 5}$ frames are undecidable with two individual variables (the proof uses two binary predicate letters and an unrestricted supply of unary letters).
- M. Rybakov, D. Shkatov 2018 QInt, as well as a number of related logics, including those containing the constant domain axiom, are undecidable in languages with two individual variables and a single monadic predicate letter.

Let $L_{w f i n}$ be the logic of finite (by the number of worlds) L-frames. In this talk, we prove that:

- Every logic between $\mathbf{Q K}{ }_{w f i n}$ and one of $\mathbf{Q S 5}{ }_{w f i n}$, QGL. $\mathbf{3}_{w f i n}$, QGrz. $\mathbf{3}_{\text {wfin }}$ is not r.e. (Π_{1}^{0}-hard) in languages with three individual variables and an unrestricted supply of unary letters.
- Every logic between $\mathbf{Q K}_{w f i n}$ and one of $\mathbf{Q K T B}_{w f i n}, \mathbf{Q G L}_{w f i n}$, $\mathbf{Q G r z}_{\text {wfin }}$ is not r.e. in languages with three individual variables and a single unary letters.
- (The positive fragment of) every logic between QInt ${ }_{w f i n}$ and $\mathbf{Q L C}_{w f i n}$ is not r.e. in languages with three individual variables and an unrestricted supply of unary letters.
- (The positive fragment of) every logic between QInt ${ }_{w f i n}$ and $\mathbf{Q K C}_{w f i n}$ is not r.e. in languages with three individual variables and a single unary letter.
- The same for the logics with the constant domain axiom.

NB D. Skvortsov 1995 QInt $_{w f i n}$ is not r.e.

Intuitionostic formulas:

$$
\varphi:=P^{n}\left(x_{1}, \ldots, x_{n}\right)|\perp|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|\forall x \varphi| \exists x \varphi
$$

Modal formulas:

$$
\varphi:=P^{n}\left(x_{1}, \ldots, x_{n}\right)|\perp|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|\forall x \varphi| \exists x \varphi \mid \square \varphi
$$

Intuitionostic formulas:

$$
\varphi:=P^{n}\left(x_{1}, \ldots, x_{n}\right)|\perp|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|\forall x \varphi| \exists x \varphi
$$

Modal formulas:

$$
\varphi:=P^{n}\left(x_{1}, \ldots, x_{n}\right)|\perp|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|\forall x \varphi| \exists x \varphi \mid \square \varphi
$$

We use the standard abbreviations:

$$
\begin{array}{ll}
\neg \varphi & =\varphi \rightarrow \perp \\
\varphi \leftrightarrow \psi & =(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi) \\
\diamond \varphi & =\neg \square \neg \varphi
\end{array}
$$

Kripke semantics

Kripke frame is a pair $\mathfrak{F}=\langle W, R\rangle$; for the intuitionistic language R is reflrxive, transitive, and antisymmetric.
Expanding domains. For a frame $\langle W, R\rangle$ consider a sysytem $\left(D_{w}\right)_{w \in W}$ of non-empty sets (domains) such that

$$
\text { (*) } w R w^{\prime} \Longrightarrow D_{w} \subseteq D_{w^{\prime}} .
$$

For every $w \in W$ define a classical model $\mathfrak{M}_{w}=\left(D_{w}, I_{w}\right)$. For the intuitionistic case we aditionally claim:

$$
w R w^{\prime} \quad \Longrightarrow \quad I_{w}\left(P^{n}\right) \subseteq I_{w^{\prime}}\left(P^{n}\right)
$$

This gives us a first-order Kripke model $\mathfrak{M}=(W, R, D, I)$ is a Kripke model, where $D=\left(D_{w}\right)_{w \in W}$ and $I=\left(I_{w}\right)_{w \in W}$.

Kripke frame is a pair $\mathfrak{F}=\langle W, R\rangle$; for the intuitionistic language R is reflrxive, transitive, and antisymmetric.
Expanding domains. For a frame $\langle W, R\rangle$ consider a sysytem $\left(D_{w}\right)_{w \in W}$ of non-empty sets (domains) such that

$$
\text { (*) } \quad w R w^{\prime} \quad \Longrightarrow \quad D_{w} \subseteq D_{w^{\prime}} .
$$

For every $w \in W$ define a classical model $\mathfrak{M}_{w}=\left(D_{w}, I_{w}\right)$. For the intuitionistic case we aditionally claim:

$$
w R w^{\prime} \quad \Longrightarrow \quad I_{w}\left(P^{n}\right) \subseteq I_{w^{\prime}}\left(P^{n}\right)
$$

This gives us a first-order Kripke model $\mathfrak{M}=(W, R, D, I)$ is a Kripke model, where $D=\left(D_{w}\right)_{w \in W}$ and $I=\left(I_{w}\right)_{w \in W}$.
(Locally) constant domains. Replace ($*$) with cd-condition:

$$
\text { (**) } \quad w R w^{\prime} \Longrightarrow \quad D_{w}=D_{w^{\prime}}
$$

Predicate Kripke frames: an example

Predicate Kripke frames: an example

Kripke semantics

Truth relation (intuitionistic language):

- $\mathfrak{M}, w \models^{g} P\left(x_{1}, \ldots, x_{n}\right)$ if $\left\langle g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right\rangle \in P^{w}$;
- $\mathfrak{M}, w \not \vDash^{g} \perp$;
- $\mathfrak{M}, w \models^{g} \varphi \wedge \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ and $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \varphi \vee \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ or $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \varphi \rightarrow \psi$ if $\mathfrak{M}, w^{\prime} \models^{g} \varphi$ implies $\mathfrak{M}, w^{\prime} \models^{g} \psi$, for any $w^{\prime} \in R(w)$;
- $\mathfrak{M}, w \models^{g} \exists x \varphi$ if $\mathfrak{M}, w \models^{g^{\prime}} \varphi$, for some g^{\prime} s.t. $g^{\prime} \stackrel{x}{=} g$ and $g^{\prime}(x) \in D_{w}$;
- $\mathfrak{M}, w \models^{g} \forall x \varphi$ if $\mathfrak{M}, w^{\prime} \models^{g^{\prime}} \varphi$, for every $w^{\prime} \in R(w)$ and every g^{\prime} s.t. $g^{\prime} \stackrel{x}{=} g$ and $g^{\prime}(x) \in D_{w^{\prime}}$.

Truth relation (modal language):

- $\mathfrak{M}, w \models^{g} P\left(x_{1}, \ldots, x_{n}\right)$ if $\left\langle g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right\rangle \in P^{w}$;
- $\mathfrak{M}, w \not \neq^{g} \perp ;$
- $\mathfrak{M}, w \models^{g} \varphi \wedge \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ and $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \varphi \vee \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ or $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \varphi \rightarrow \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ implies $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \exists x \varphi$ if $\mathfrak{M}, w \models^{g^{\prime}} \varphi$, for some g^{\prime} s.t. $g^{\prime} \stackrel{x}{=} g$ and $g^{\prime}(x) \in D_{w}$;
- $\mathfrak{M}, w \models^{g} \forall x \varphi$ if $\mathfrak{M}, w \models^{g^{\prime}} \varphi$, for every g^{\prime} s.t. $g^{\prime} \stackrel{x}{=} g$ and $g^{\prime}(x) \in D_{w}$;
- $\mathfrak{M}, w \models^{g} \square \varphi$ if $\mathfrak{M}, w^{\prime} \models^{g} \varphi$, for every $w^{\prime} \in R(w)$.

Truth relation (modal language):

- $\mathfrak{M}, w \models^{g} P\left(x_{1}, \ldots, x_{n}\right)$ if $\left\langle g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right\rangle \in P^{w}$;
- $\mathfrak{M}, w \not \neq^{g} \perp ;$
- $\mathfrak{M}, w \models^{g} \varphi \wedge \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ and $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \varphi \vee \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ or $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \varphi \rightarrow \psi$ if $\mathfrak{M}, w \models^{g} \varphi$ implies $\mathfrak{M}, w \models^{g} \psi$;
- $\mathfrak{M}, w \models^{g} \exists x \varphi$ if $\mathfrak{M}, w \models^{g^{\prime}} \varphi$, for some g^{\prime} s.t. $g^{\prime} \stackrel{x}{=} g$ and $g^{\prime}(x) \in D_{w}$;
- $\mathfrak{M}, w \models^{g} \forall x \varphi$ if $\mathfrak{M}, w \models^{g^{\prime}} \varphi$, for every g^{\prime} s.t. $g^{\prime} \stackrel{x}{=} g$ and $g^{\prime}(x) \in D_{w}$;
- $\mathfrak{M}, w \models^{g} \square \varphi$ if $\mathfrak{M}, w^{\prime} \models^{g} \varphi$, for every $w^{\prime} \in R(w)$.
- $\mathfrak{M}, w \models \varphi\left(x_{1}, \ldots, x_{n}\right)$ if $\mathfrak{M}, w \models^{g} \varphi\left(x_{1}, \ldots, x_{n}\right)$, for every g such that $g\left(x_{1}\right), \ldots, g\left(x_{n}\right) \in D_{w}$;
- $\mathfrak{M} \models \varphi$ if $\mathfrak{M}, w \models \varphi$, for every $w \in W$;
- $\mathfrak{F} \models \varphi$ if $\mathfrak{M} \models \varphi$, for every model \mathfrak{M} based over \mathfrak{F}.

The logics under consideration are:

- $\mathbf{Q C l}$, the classical predicate logic;
- $\mathbf{Q C l}_{f i n}$, the classical logic of finite models;
- QK, the modal logic of all frames;
- $\mathbf{Q} L=\mathbf{Q K} \oplus L$, for a normal modal propositional logic L;
- QInt, the logic of all intuitionistic frames;
- QLC, the logic of linear intuitionistic frames;
- QKC, the logic of convergent intuitionistic frames;
- $L_{w f i n}$, the logic of all finite frames of L;
- $L . \mathbf{c d}_{w f i n}$, the logic of all finite frames of L with cd-condition.

The logics under consideration are:

- $\mathbf{Q C l}$, the classical predicate logic;
- $\mathbf{Q C l}_{\text {fin }}$, the classical logic of finite models;
- QK, the modal logic of all frames;
- $\mathbf{Q} L=\mathbf{Q K} \oplus L$, for a normal modal propositional logic L;
- QInt, the logic of all intuitionistic frames;
- QLC, the logic of linear intuitionistic frames;
- QKC, the logic of convergent intuitionistic frames;
- $L_{w f i n}$, the logic of all finite frames of L;
- $L . \mathbf{c d}_{w f i n}$, the logic of all finite frames of L with cd-condition.

Clearly, QInt $\subset \mathbf{Q K C} \subset \mathbf{Q L C} \subset \mathbf{Q C l}$.

The logics under consideration are:

- $\mathbf{Q C l}$, the classical predicate logic;
- $\mathbf{Q C l}_{f i n}$, the classical logic of finite models;
- QK, the modal logic of all frames;
- $\mathbf{Q} L=\mathbf{Q K} \oplus L$, for a normal modal propositional logic L;
- QInt, the logic of all intuitionistic frames;
- QLC, the logic of linear intuitionistic frames;
- QKC, the logic of convergent intuitionistic frames;
- $L_{w f i n}$, the logic of all finite frames of L;
- $L . \mathbf{c d}_{w f i n}$, the logic of all finite frames of L with cd-condition.

Clearly, QInt $\subset \mathbf{Q K C} \subset \mathbf{Q L C} \subset \mathbf{Q C l}$.
Let $\mathbf{Q C l}_{\text {fin }}^{+} \leqslant 2(3)$ be the positive fragment of $\mathbf{Q C l} \mathbf{f i n}_{\text {fin }}$ with three variables and predicate letters of arity at most two.

The logics under consideration are:

- $\mathbf{Q C l}$, the classical predicate logic;
- $\mathbf{Q C l}_{f i n}$, the classical logic of finite models;
- QK, the modal logic of all frames;
- $\mathbf{Q} L=\mathbf{Q K} \oplus L$, for a normal modal propositional logic L;
- QInt, the logic of all intuitionistic frames;
- QLC, the logic of linear intuitionistic frames;
- QKC, the logic of convergent intuitionistic frames;
- $L_{w f i n}$, the logic of all finite frames of L;
- $L . \mathbf{c d}_{w f i n}$, the logic of all finite frames of L with cd-condition.

Clearly, QInt $\subset \mathbf{Q K C} \subset \mathbf{Q L C} \subset \mathbf{Q C l}$.
Let $\mathbf{Q C l}_{\text {fin }}^{+} \leqslant 2(3)$ be the positive fragment of $\mathbf{Q C l} \mathbf{f i n}_{\text {fin }}$ with three variables and predicate letters of arity at most two.
It is known that $\mathbf{Q C l}_{\text {fin }}^{+\leqslant 2}(3)$ is Π_{1}^{0}-complete.

Embedding of $\mathbf{Q C l}_{f i n}^{+\leqslant 2}(3)$ into $\mathbf{Q K}_{w f i n}$

Let φ be a classical formula (in the language of $\mathbf{Q C l}_{\text {fin }}^{+} \leqslant 2(3)$). Let

$$
\begin{aligned}
A_{1} & =\forall x \diamond T(x) \\
A_{2} & =\forall x \forall y(x \approx y \leftrightarrow \square(T(x) \leftrightarrow T(y)))
\end{aligned}
$$

Observe that A_{2} implies that \approx is an equivalence relation.
Let $A=A_{1} \wedge A_{2}$ and let Congr be the formula asserting that \approx is a congruence with respect to the predicate letters of φ, i.e., a conjunction of formulas

$$
\begin{gathered}
\forall x \forall y(x \approx y \rightarrow(P(x) \rightarrow P(y))) \\
\forall x \forall y \forall z(x \approx y \rightarrow((S(z, x) \rightarrow S(z, y)) \wedge(S(x, z) \rightarrow S(y, z)))
\end{gathered}
$$

where P ranges over the monadic, and S binary, predicate letters of φ. Lastly, let

$$
\bar{\varphi}=A \wedge C o n g r \rightarrow \varphi
$$

Observe that $\bar{\varphi}$ contains three individual variables.

Embedding of $\mathbf{Q C l}_{f i n}^{+\leqslant 2}(3)$ into $\mathbf{Q K}_{w f i n}$

Lemma

Let $L \in\{\mathbf{Q K}, \mathbf{Q S 5}, \mathbf{Q G L} .3, \mathbf{Q G r z} .3\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\bar{\varphi} \in L_{w f i n}$;
(3) $\bar{\varphi} \in L . \mathbf{c d}_{w f i n}$.

Lemma

Let $L \in\{\mathbf{Q K}, \mathbf{Q S 5}, \mathbf{Q G L} .3, \mathbf{Q G r z} .3\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\bar{\varphi} \in L_{w f i n}$;
(3) $\bar{\varphi} \in L . \mathbf{c d}_{w f i n}$.

Theorem

Every logic in $\left[\mathbf{Q K}_{w f i n}, \mathbf{Q G L . 3 . c d}{ }_{w f i n}\right],\left[\mathbf{Q K}_{w f i n}, \mathbf{Q G r z . 3 . c d}{ }_{w f i n}\right]$, and $\left[\mathbf{Q K}_{\text {wfin }}, \mathbf{Q S 5} \mathbf{w f i n ~}\right]$ is Π_{1}^{0}-hard in languages with three individual variables and predicate letters of arity at most two.

Eliminating of binary letters

Let P be a binary predicate letters of $\bar{\varphi}$. Let Q_{1} and Q_{2} be monadic predicate letters, not occurring in $\bar{\varphi}$. Lastly, let ${ }^{\sigma}$ be the function substituting $\diamond\left(Q_{1}(x) \wedge Q_{2}(y)\right)$ for $P(x, y)$.

Lemma

The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{\text {fin }}$;
(2) $\bar{\varphi}^{\sigma} \in \mathbf{Q K}_{w f i n}$;
(3) $\bar{\varphi}^{\sigma} \in$ QK.cd $_{w f i n}$.

Proof.

$(1) \Rightarrow(2) \Rightarrow(3)$ are clear.
We explain $(3) \Rightarrow(1)$ as $\neg(1) \Rightarrow \neg(3)$.

Eliminating of binary letters

$$
\neg(1) \Rightarrow \neg(3):
$$

$\neg(1) \Rightarrow \neg(3):$
Assume $\varphi \notin \mathbf{Q C l}_{\text {fin }}$. Then, $\mu \Vdash \varphi$, for some classical model $\mu=\langle\mathcal{D}, \mathcal{I}\rangle$ with $\mathcal{D}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$. We define a QK.cd wfin -model \mathfrak{M} and show that $\mathfrak{M}, w \not \vDash \bar{\varphi}$, for some $w \in W$.
$\neg(1) \Rightarrow \neg(3):$
Assume $\varphi \notin \mathbf{Q C l}_{\text {fin }}$. Then, $\mu \Vdash \varphi$, for some classical model $\mu=\langle\mathcal{D}, \mathcal{I}\rangle$ with $\mathcal{D}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$. We define a QK.cd wfin -model \mathfrak{M} and show that $\mathfrak{M}, w \not \vDash \bar{\varphi}$, for some $w \in W$.
Idea:

We want: $w_{a b} \models Q_{1}(c) \wedge Q_{2}(d) \Longleftrightarrow c=a, d=b, \mu \models P(a, b)$.
$\neg(1) \Rightarrow \neg(3):$
Assume $\varphi \notin \mathbf{Q C l}_{\text {fin }}$. Then, $\mu \Vdash \varphi$, for some classical model $\mu=\langle\mathcal{D}, \mathcal{I}\rangle$ with $\mathcal{D}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$. We define a QK.cd ${ }_{\text {wfin }}$-model \mathfrak{M} and show that $\mathfrak{M}, w \not \vDash \bar{\varphi}$, for some $w \in W$. Let

- $W=\left\{w_{0}\right\} \cup\left\{w_{a b}: a, b \in \mathcal{D}\right\}$;
- $R=\left\{\left\langle w_{0}, w_{a b}\right\rangle: a, b \in \mathcal{D}\right\}$;
- $D_{w}=\mathcal{D}$, for every $w \in W$,
and let $I=\left(I_{w}\right)_{w \in W}$ be defined so that
- $w_{a b} \models T(c) \leftrightharpoons c=a$;
- $w_{0} \models a_{s} \approx a_{t} \leftrightharpoons s=t$;
- $I_{w_{0}}(P)=\mathcal{I}(P)$, for every predicate letter P of φ;
- $w_{a b} \models Q_{1}(c) \leftrightharpoons c=a$;
- $w_{a b} \models Q_{2}(c) \leftrightharpoons c=b$ and $\mu \models P(a, b)$;

Finally, let $\mathfrak{M}=\langle W, R, D, I\rangle$.
Then, $w_{0} \not \vDash \bar{\varphi}$.

Single unary letter: modal language

Single unary letter: modal language

Single unary letter: modal language

$$
\begin{aligned}
& w_{n}^{n} \bullet P(a) \quad \text { if } w \models P_{n}(a) \\
& \neg P(a) \\
& \text { Let } \quad A_{k}(x)=\neg P(x) \wedge \diamond \square \perp \wedge \diamond^{n} \square \perp \wedge \diamond^{k} P(x) \text {. }
\end{aligned}
$$

Then the formula $\diamond A_{k}(x)$ simulates $P_{k}(x)$ at the world w.

Single unary letter: modal language

Single unary letter: modal language

Theorem

Logics $\mathbf{Q K}_{w f i n}$ and $\mathbf{Q K} . \mathbf{c d}_{w f i n}$ are Π_{1}^{0}-complete in the language with a single unary predicate letter and three individual variables.

Theorem

Logics $\mathbf{Q K}_{w f i n}$ and $\mathbf{Q K . c d}{ }_{w f i n}$ are Π_{1}^{0}-complete in the language with a single unary predicate letter and three individual variables.

Theorem

Logics $\mathbf{Q} L_{w f i n}$ and $\mathbf{Q} L . \mathbf{c d}_{\text {wfin }}$ are Π_{1}^{0}-hard in the language with a single unary predicate letter and three individual variables, for any L containing \mathbf{K} and contained in one of GL, Grz, KTB.

Some results

- Let L be a logic containing $\mathbf{Q K}$ and contained in $\mathbf{Q G L} \oplus \boldsymbol{b f}$ or $\mathbf{Q G r z} \oplus \boldsymbol{b} \boldsymbol{f}$ or $\mathbf{Q K T B} \oplus \boldsymbol{b} \boldsymbol{f}$. Then L is Σ_{1}^{0}-hard in the language with a single unary predicate letter and two individual variables.
- Let L be a logic containing $\mathbf{Q K}$ and contained in $\mathbf{Q G L} \oplus \boldsymbol{b f}$ or $\mathbf{Q G r z} \oplus \boldsymbol{b} \boldsymbol{f}$ or $\mathbf{Q K T B} \oplus \boldsymbol{b} \boldsymbol{f}$. Then L is Σ_{1}^{0}-hard in the language with a single unary predicate letter and two individual variables.
- Let L be a logic containing QK and contained in QS5. Then L is Σ_{1}^{0}-hard in the language with a two unary predicate letters, two individual variables, and infinitely many proposition letters.
- Let L be a logic containing $\mathbf{Q K}$ and contained in $\mathbf{Q G L} \oplus \boldsymbol{b f}$ or $\mathbf{Q G r z} \oplus \boldsymbol{b} \boldsymbol{f}$ or $\mathbf{Q K T B} \oplus \boldsymbol{b} \boldsymbol{f}$. Then L is Σ_{1}^{0}-hard in the language with a single unary predicate letter and two individual variables.
- Let L be a logic containing QK and contained in QS5. Then L is Σ_{1}^{0}-hard in the language with a two unary predicate letters, two individual variables, and infinitely many proposition letters.
- Let $\mathfrak{F}=\langle\mathbb{N}, R\rangle$, where R is a relation between $<$ and \leqslant. Then the logic of \mathfrak{F} is Π_{1}^{1}-hard in the language with a single unary predicate letter, single proposition letter, and two individual variables.

Some results

- The logic of finite frames of a logic contained in $\mathbf{Q G L} \oplus \boldsymbol{b} \boldsymbol{f}$, $\mathbf{Q G r z} \oplus \boldsymbol{b} \boldsymbol{f}$ or $\mathbf{Q K T B} \oplus \boldsymbol{b} \boldsymbol{f}$ is Π_{1}^{0}-hard in the language with a single unary predicate letter and three individual variables.
- The logic of finite frames of a logic contained in $\mathbf{Q G L} \oplus \boldsymbol{b} \boldsymbol{f}$, $\mathbf{Q G r z} \oplus \boldsymbol{b} \boldsymbol{f}$ or $\mathbf{Q K T B} \oplus \boldsymbol{b} \boldsymbol{f}$ is Π_{1}^{0}-hard in the language with a single unary predicate letter and three individual variables.
- Let L be a logic containing QwGrz and contained in QGL. $\mathbf{3} \oplus \boldsymbol{b} \boldsymbol{f}$ or QGrz. $\mathbf{3} \oplus \boldsymbol{b} \boldsymbol{f}$. Then the logic of L-frames is Π_{1}^{1}-hard in the language with a single unary predicate letter, single proposition letter, and two individual variables.
- The logic of finite frames of a logic contained in $\mathbf{Q G L} \oplus \boldsymbol{b} \boldsymbol{f}$, $\mathbf{Q G r z} \oplus \boldsymbol{b} \boldsymbol{f}$ or $\mathbf{Q K T B} \oplus \boldsymbol{b} \boldsymbol{f}$ is Π_{1}^{0}-hard in the language with a single unary predicate letter and three individual variables.
- Let L be a logic containing QwGrz and contained in QGL. $\mathbf{3} \oplus \boldsymbol{b} \boldsymbol{f}$ or QGrz. $\mathbf{3} \oplus \boldsymbol{b f}$. Then the logic of L-frames is Π_{1}^{1}-hard in the language with a single unary predicate letter, single proposition letter, and two individual variables.
- Predicate counterparts of CTL* ${ }^{*}$ CTL, LTL, ATL*, ATL are Π_{1}^{1}-hard in the language with a single unary predicate letter and two individual variables.

Embedding of $\mathbf{Q C l}_{\text {fin }}^{+\leqslant 2}(3)$ into QInt $_{\text {wfin }}^{+}$

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+}{ }^{\leqslant 2}(3)$ into positive fragment of any logic L between QInt ${ }_{w f i n}$ and QLC.cd ${ }_{w f i n}$.

We construct an embedding of $\mathbf{Q C l}_{f i n}^{+} \leqslant 2(3)$ into positive fragment of any logic L between QInt ${ }_{w f i n}$ and QLC.cd ${ }_{w f i n}$.
Let

$$
\begin{aligned}
\operatorname{Min}(x) & =\forall y(x \prec y \vee x \approx y) ; \\
\operatorname{Max}(x) & =\forall y(y \prec x) ; \\
x \triangleleft y & =x \prec y \wedge \forall z(x \prec z \wedge z \prec y \rightarrow z \approx y) .
\end{aligned}
$$

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+\leqslant 2}(3)$ into positive fragment of any logic L between QInt ${ }_{w f i n}$ and QLC.cd ${ }_{w f i n}$.
Let

$$
\begin{aligned}
\operatorname{Min}(x) & =\forall y(x \prec y \vee x \approx y) ; \\
\operatorname{Max}(x) & =\forall y(y \prec x) ; \\
x \triangleleft y & =x \prec y \wedge \forall z(x \prec z \wedge z \prec y \rightarrow z \approx y)
\end{aligned}
$$

Define

$$
\begin{aligned}
& A_{1}=\forall x \exists y(x \triangleleft y) ; \\
& A_{2}=\exists x \operatorname{Min}(x) ; \\
& A_{3}=\exists x \operatorname{Max}(x) ; \\
& A_{4}=\forall x \forall y \forall z(x \prec y \wedge y \prec z \rightarrow x \prec z) ; \\
& A_{5}=\forall x \forall y(x \prec y \vee y \prec x \vee x \approx y) ; \\
& A_{6}=\forall x \forall y(x \prec y \wedge y \prec x \rightarrow x \approx y) ; \\
& A_{7}=\forall x \forall y(x \prec y \wedge x \approx y \rightarrow \operatorname{Max}(x)) ; \\
& A_{8}=\forall x \forall y((T(x) \rightarrow T(y)) \rightarrow x \prec y \vee x \approx y) ; \\
& A_{9}=\forall x \forall y(x \prec y \rightarrow(T(x) \rightarrow T(y))) .
\end{aligned}
$$

Let A be a conjunction of formulas A_{1} through A_{9}.

We construct an embedding of $\mathbf{Q C l}_{f i n}^{+} \leqslant 2(3)$ into positive fragment of any logic L between QInt ${ }_{w f i n}$ and QLC.cd ${ }_{w f i n}$.
Also let

$$
\begin{aligned}
& B_{1}=\forall x \forall y \forall z \bigwedge_{\psi \in \operatorname{sub}(\varphi)}(q \rightarrow \psi) \\
& B_{2}=\forall x \forall y \forall z \bigwedge_{\psi \in \operatorname{sub}(\varphi)}(\psi \vee(\psi \rightarrow q)),
\end{aligned}
$$

and let $B=B_{1} \wedge B_{2}$.

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+\leqslant 2}(3)$ into positive fragment of any logic L between QInt wfin and QLC.cd ${ }_{w f i n}$.
Also let

$$
\begin{aligned}
B_{1} & =\forall x \forall y \forall z \bigwedge_{\psi \in \operatorname{sub}(\varphi)}(q \rightarrow \psi) \\
B_{2} & =\forall x \forall y \forall z \bigwedge_{\psi \in \operatorname{sub}(\varphi)}(\psi \vee(\psi \rightarrow q))
\end{aligned}
$$

and let $B=B_{1} \wedge B_{2}$.
Let C be a conjunction of the formulas

$$
\begin{gathered}
\forall x(x \approx x) \wedge \forall x \forall y(x \approx y \rightarrow y \approx x) \wedge \forall x \forall y \forall z(x \approx y \wedge y \approx z \rightarrow x \approx z) \\
\forall x \forall y(x \approx y \rightarrow(P(x) \rightarrow P(y))) \\
\forall x \forall y \forall z(x \approx y \rightarrow((S(z, x) \rightarrow S(z, y)) \wedge(S(x, z) \rightarrow S(y, z)))
\end{gathered}
$$

where P ranges over the monadic, and S binary, predicate letters of φ.

We construct an embedding of $\mathbf{Q C l}_{f i n}^{+} \leqslant 2(3)$ into positive fragment of any logic L between QInt ${ }_{w f i n}$ and QLC.cd wfin .
Finally, let

$$
\bar{\varphi}=A \wedge B \wedge C \rightarrow \varphi .
$$

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+} \leqslant 2(3)$ into positive fragment of any logic L between QInt ${ }_{w f i n}$ and QLC.cd ${ }_{w f i n}$.
Finally, let

$$
\bar{\varphi}=A \wedge B \wedge C \rightarrow \varphi
$$

Lemma

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q L C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{\text {fin }}$;
(2) $\bar{\varphi} \in L_{w f i n}$;
(3) $\bar{\varphi} \in L \cdot \mathbf{c d}_{w f i n}$.

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+}{ }^{\leqslant 2}(3)$ into positive fragment of any logic L between QInt wfin and QLC.cd ${ }_{w f i n}$.
Finally, let

$$
\bar{\varphi}=A \wedge B \wedge C \rightarrow \varphi
$$

Lemma

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q L C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\bar{\varphi} \in L_{w f i n}$;
(3) $\bar{\varphi} \in L \cdot \mathbf{c d}_{w f i n}$.

Proof.

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+2}(3)$ into positive fragment of any logic L between QInt wfin and QLC.cd ${ }_{w f i n}$.
Finally, let

$$
\bar{\varphi}=A \wedge B \wedge C \rightarrow \varphi
$$

Lemma

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q L C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\bar{\varphi} \in L_{w f i n}$;
(3) $\bar{\varphi} \in L \cdot \mathbf{c d}_{w f i n}$.

Proof.

$(2) \Rightarrow(3)$: obvious.

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+2}(3)$ into positive fragment of any $\operatorname{logic} L$ between QInt ${ }_{w f i n}$ and QLC.cd ${ }_{w f i n}$.
Finally, let

$$
\bar{\varphi}=A \wedge B \wedge C \rightarrow \varphi
$$

Lemma

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q L C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\bar{\varphi} \in L_{w f i n}$;
(3) $\bar{\varphi} \in L \cdot \mathbf{c d}_{w f i n}$.

Proof.

$(2) \Rightarrow(3)$: obvious.
$(1) \Rightarrow(2):$ technical.

We construct an embedding of $\mathbf{Q C l}_{\text {fin }}^{+2}(3)$ into positive fragment of any $\operatorname{logic} L$ between QInt ${ }_{w f i n}$ and QLC.cd ${ }_{w f i n}$.
Finally, let

$$
\bar{\varphi}=A \wedge B \wedge C \rightarrow \varphi
$$

Lemma

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q L C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\bar{\varphi} \in L_{w f i n}$;
(3) $\bar{\varphi} \in L \cdot \mathbf{c d}_{w f i n}$.

Proof.

$(2) \Rightarrow(3)$: obvious.
$(1) \Rightarrow(2):$ technical.
$(3) \Rightarrow(1)$: we need it; we prove $\neg(1) \Rightarrow \neg(3)$.

Embedding of $\mathbf{Q C l}_{f i n}^{+\leqslant 2}(3)$ into QInt $_{\text {wfin }}^{+}$
$\neg(1) \Rightarrow \neg(3):$
$\neg(1) \Rightarrow \neg(3):$
Assume $\varphi \notin \mathbf{Q C l}_{f i n}$. Then, $\mu \Vdash \varphi$, for some classical model $\mu=\langle\mathcal{D}, \mathcal{I}\rangle$ with $\mathcal{D}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$. We define a QLC.cd ${ }_{w f i n}$-model \mathfrak{M} and show that $\mathfrak{M}, w \not \vDash \bar{\varphi}$, for some $w \in W$. Let

- $W=\left\{w_{0}, w_{1}, \ldots, w_{n}\right\}$;
- $R=\left\{\left\langle w_{k}, w_{k-1}\right\rangle: 1 \leqslant k \leqslant n\right\}^{*}$;
- $D_{w}=\mathcal{D}$, for every $w \in W$,
and let $I=\left(I_{w}\right)_{w \in W}$ be defined so that
- $w_{k} \models T\left(a_{s}\right) \leftrightharpoons k \leqslant s$;
- $w_{k} \models a_{s} \prec a_{t} \leftrightharpoons$ either $s<t$ or both $s \geqslant k$ and $t \geqslant k$;
- $w_{k} \models a_{s} \approx a_{t} \leftrightharpoons$ either $s=t$ or both $s \geqslant k$ and $t \geqslant k$;
- $w_{k} \models q \leftrightharpoons k \neq n$;
- $I_{w_{n}}(P)=\mathcal{I}(P)$, for every predicate letter P of φ;
- $I_{w_{k}}(P)=\mathcal{D}^{m}$, for every $k \neq n$ and m-ary predicate letter P of φ.

Finally, let $\mathfrak{M}=\langle W, R, D, I\rangle$. Evidently, I satisfies the heredity condition; therefore, \mathfrak{M} is a QLC.cd ${ }_{w f i n}$-model.
Then, $w_{n} \not \vDash \bar{\varphi}$.

$$
\begin{aligned}
& a_{0} a_{1} a_{2} \\
& w_{0} \\
& a_{1} \\
& a_{0} \\
& a_{1}
\end{aligned} a_{2}
$$

Theorem

Every logic between QInt wfin and QLC.cd ${ }_{\text {wfin }}$ is Π_{1}^{0}-hard and Σ_{1}^{0}-hard in languages with three individual variables and predicate letters of arity at most two.

Theorem

Every logic between QInt $_{\text {wfin }}$ and QLC.cd ${ }_{\text {wfin }}$ is Π_{1}^{0}-hard and Σ_{1}^{0}-hard in languages with three individual variables and predicate letters of arity at most two.

Thus, many predicate superintuitionistic logics of natural classes of finite Kripke frames are neither recursively enumerable nor co-recursively enumerable in such languages:

Corollary

[^0]Elimination of binary predicate letters

Let P_{1}, \ldots, P_{m} be the binary predicate letters of $\bar{\varphi}$.
Let $F_{1}, G_{1}, \ldots, F_{m}, G_{m}$ be distinct monadic predicate letters, and $p_{1}, r_{1}, \ldots, p_{m}, r_{m}$ distinct proposition letters, not occurring in $\bar{\varphi}$.

Lastly, let.$^{\sigma}$ be the function substituting $\left(F_{j}(x) \wedge G_{j}(y) \rightarrow p_{j}\right) \vee r_{j}$ for $P_{j}(x, y)$, for each $j \in\{1, \ldots, m\}$, in $\bar{\varphi}$.

Let P_{1}, \ldots, P_{m} be the binary predicate letters of $\bar{\varphi}$.
Let $F_{1}, G_{1}, \ldots, F_{m}, G_{m}$ be distinct monadic predicate letters, and $p_{1}, r_{1}, \ldots, p_{m}, r_{m}$ distinct proposition letters, not occurring in $\bar{\varphi}$.

Lastly, let $\cdot \sigma$ be the function substituting $\left(F_{j}(x) \wedge G_{j}(y) \rightarrow p_{j}\right) \vee r_{j}$ for $P_{j}(x, y)$, for each $j \in\{1, \ldots, m\}$, in $\bar{\varphi}$.

Lemma

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q K C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{\text {fin }}$;
(2) $\bar{\varphi}^{\sigma} \in L_{w f i n}$;
(3) $\bar{\varphi}^{\sigma} \in L . \mathbf{c d}_{w f i n}$.

Proof. Similar to Kripke trick.

Elimination of binary predicate letters

Let q_{1}, \ldots, q_{m} be the proposition letters of $\bar{\varphi}^{\sigma}$ and let Q_{1}, \ldots, Q_{m} be distinct monadic predicate letters not occurring in $\bar{\varphi}^{\sigma}$. Let $\bar{\varphi}^{\#}$ be the result of substituting $\exists x Q_{i}(x)$ for q_{i}, for each $i \in\{1, \ldots, m\}$, in $\bar{\varphi}^{\sigma}$.

Corollary

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q K C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{\text {fin }}$;
(2) $\bar{\varphi}^{\#} \in L_{w f i n}$;
(3) $\bar{\varphi}^{\#} \in L \cdot \operatorname{cd}_{w f i n}$.

We, therefore, obtain the following:

Theorem

Every logic between QInt $_{\text {wfin }}$ and QKC.cd ${ }_{w f i n}$ is Π_{1}^{0}-hard in languages with three individual variables and only monadic predicate letters.

Elimination of monadic predicate letters

Elimination of monadic predicate letters

Let P_{1}, \ldots, P_{s} be the (monadic) predicate letters of $\bar{\varphi}^{\#}$. We assume that $s \geqslant 2$-otherwise, $\bar{\varphi}^{\#}$ already has the required form. Let P be a monadic predicate letter distinct from P_{1}, \ldots, P_{s}.

We begin by defining a finite predicate frame $\mathfrak{F}_{0}=\left\langle W_{0}, R_{0}\right\rangle$ and some special model with cd-condition on it defined for an individual a; we assume that the domain of the model contains at least three element; we refer to such a model as a-suitable.

First, we define formulas associated with the worlds of the three top-most levels:

$$
\begin{aligned}
D_{1} & =\exists x P(x) ; \\
D_{2}(x) & =\exists x P(x) \rightarrow P(x) ; \\
D_{3}(x) & =P(x) \rightarrow \forall x P(x) ; \\
A_{1}^{0}(x) & =D_{2}(x) \rightarrow D_{1} \vee D_{3}(x) ; \\
A_{2}^{0}(x) & =D_{3}(x) \rightarrow D_{1} \vee D_{2}(x) \\
B_{1}^{0}(x) & =D_{1} \rightarrow D_{2}(x) \vee D_{3}(x) ; \\
B_{2}^{0}(x) & =A_{1}^{0}(x) \wedge A_{2}^{0}(x) \wedge B_{1}^{0}(x) \rightarrow D_{1} \vee D_{2}(x) \vee D_{3}(x) ; \\
A_{1}^{1}(x) & =A_{1}^{0}(x) \wedge A_{2}^{0}(x) \rightarrow B_{1}^{0}(x) \vee B_{2}^{0}(x) ; \\
A_{2}^{1}(x) & =A_{1}^{0}(x) \wedge B_{1}^{0}(x) \rightarrow A_{2}^{0}(x) \vee B_{2}^{0}(x) ; \\
A_{3}^{1}(x) & =A_{1}^{0}(x) \wedge B_{2}^{0}(x) \rightarrow A_{2}^{0}(x) \vee B_{1}^{0}(x) \\
B_{1}^{1}(x) & =A_{2}^{0}(x) \wedge B_{1}^{0}(x) \rightarrow A_{1}^{0}(x) \vee B_{2}^{0}(x) ; \\
B_{2}^{1}(x) & =A_{2}^{0}(x) \wedge B_{2}^{0}(x) \rightarrow A_{1}^{0}(x) \vee B_{1}^{0}(x) \\
B_{3}^{1}(x) & =B_{1}^{0}(x) \wedge B_{2}^{0}(x) \rightarrow A_{1}^{0}(x) \vee A_{2}^{0}(x)
\end{aligned}
$$

We proceed by recursion. Assume formulas associated with the worlds of level k, where $k \geqslant 1$, have been defined. Let i, j and m be as in the definition of frame \mathfrak{F}_{0} above; put

$$
\begin{aligned}
& A_{m}^{k+1}(x)=A_{1}^{k}(x) \rightarrow B_{1}^{k}(x) \vee A_{i}^{k}(x) \vee B_{j}^{k}(x) ; \\
& B_{m}^{k+1}(x)=B_{1}^{k}(x) \rightarrow A_{1}^{k}(x) \vee A_{i}^{k}(x) \vee B_{j}^{k}(x) .
\end{aligned}
$$

Elimination of monadic predicate letters

Lemma

Let \mathfrak{N}_{a} be an a-suitable model with a constant domain \mathcal{A}. Then,

$$
\begin{aligned}
\mathfrak{N}_{a}, w \not \vDash A_{m}^{k}(a) & \Longleftrightarrow w R_{0} \alpha_{m}^{k} ; ~ ; ~ \\
\mathfrak{N}_{a}, w \not \vDash B_{m}^{k}(a) & \Longleftrightarrow w R_{0} \beta_{m}^{k} .
\end{aligned}
$$

Lemma

Let \mathfrak{N}_{a} be an a-suitable model with a constant domain \mathcal{A}. Then,

$$
\begin{aligned}
\mathfrak{N}_{a}, w \not \vDash A_{m}^{k}(a) & \Longleftrightarrow w R_{0} \alpha_{m}^{k} ; ~ ; ~ \\
\mathfrak{N}_{a}, w \not \vDash B_{m}^{k}(a) & \Longleftrightarrow w R_{0} \beta_{m}^{k} .
\end{aligned}
$$

Lemma

Let \mathfrak{N}_{a} be an a-suitable model with a constant domain \mathcal{A} and let $b \in \mathcal{A}-\{a\}$. Then, for every $w \in W_{0}$ and every $k \geqslant 2$,

$$
\mathfrak{N}_{a}, w \models A_{m}^{k}(b) \quad \text { and } \quad \mathfrak{N}_{a}, w \models B_{m}^{k}(b) .
$$

Elimination of monadic predicate letters

Let $\left(\bar{\varphi}^{\#}\right)^{\prime}$ be the result of substituting into $\bar{\varphi}^{\#}$, for each $r \in\{1, \ldots, s\}$,

$$
A_{r}^{s+1}(x) \vee B_{r}^{s+1}(x) \quad \text { for } \quad P_{r}(x) .
$$

Lemma

Let $L \in\{$ QInt, $\mathbf{Q K C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L_{w f i n}$;
(3) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L . \mathbf{c d}_{w f i n}$.

Let $\left(\bar{\varphi}^{\#}\right)^{\prime}$ be the result of substituting into $\bar{\varphi}^{\#}$, for each $r \in\{1, \ldots, s\}$,

$$
A_{r}^{s+1}(x) \vee B_{r}^{s+1}(x) \quad \text { for } \quad P_{r}(x) .
$$

Lemma

Let $L \in\{$ QInt, $\mathbf{Q K C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L_{w f i n}$;
(3) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L . \mathbf{c d}_{w f i n}$.

Proof.

Let $\left(\bar{\varphi}^{\#}\right)^{\prime}$ be the result of substituting into $\bar{\varphi}^{\#}$, for each $r \in\{1, \ldots, s\}$,

$$
A_{r}^{s+1}(x) \vee B_{r}^{s+1}(x) \quad \text { for } \quad P_{r}(x) .
$$

Lemma

Let $L \in\{$ QInt, $\mathbf{Q K C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{f i n}$;
(2) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L_{w f i n}$;
(3) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L \cdot \operatorname{cd}_{w f i n}$.

Proof.

$(1) \Rightarrow(2) \Rightarrow(3)$: obvious.

Let $\left(\bar{\varphi}^{\#}\right)^{\prime}$ be the result of substituting into $\bar{\varphi}^{\#}$, for each $r \in\{1, \ldots, s\}$,

$$
A_{r}^{s+1}(x) \vee B_{r}^{s+1}(x) \text { for } \quad P_{r}(x)
$$

Lemma

Let $L \in\{$ QInt, $\mathbf{Q K C}\}$. The following statements are equivalent:
(1) $\varphi \in \mathbf{Q C l}_{\text {fin }}$;
(2) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L_{w f i n}$;
(3) $\left(\bar{\varphi}^{\#}\right)^{\prime} \in L . \mathbf{c d}_{w f i n}$.

Proof.

$(1) \Rightarrow(2) \Rightarrow(3)$: obvious.
$(3) \Rightarrow(1)$: we prove it as $\neg(1) \Rightarrow \neg(3)$.

Elimination of monadic predicate letters

Case QInt.cd ${ }_{w f i n}$:

Assume $\varphi \notin \mathbf{Q C l}_{f i n}$. Then $\mathfrak{M}^{\#}, w_{n} \not \vDash \bar{\varphi}^{\#}$, where $\mathfrak{M}^{\#}$ is the model constructed on finite linear model \mathfrak{M} with cd-condition: the domain of any its world is $\mathcal{D}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$; we may assume that \mathcal{D} contains at least three elements.

We use $\mathfrak{M}^{\#}$ to obtain a finite intuitionistic Kripke model with a constant domain refuting $\left(\bar{\varphi}^{\#}\right)^{\prime}$.

For every $a \in \mathcal{D}$, let $\mathfrak{F}^{a}=\left\langle\{a\} \times W_{0}, R^{a}\right\rangle$ be an isomorphic copy of the frame \mathfrak{F}_{0} under the isomorphism $f: v \mapsto\langle a, v\rangle$.

Let

$$
W^{\prime \prime}=W^{\prime} \cup\left(\mathcal{D} \times W_{0}\right) .
$$

Since W^{\prime}, \mathcal{D} and W_{0} are finite, so is $W^{\prime \prime}$.

Let S be the smallest relation on $W^{\prime \prime}$ such that

- $R^{\prime} \subseteq S$;
- $\bigcup_{a \in \mathcal{D}} R^{a} \subseteq S$;
- for every $w \in W^{\prime}$, every $v \in W^{\prime \prime}-W^{\prime}$, every $a \in \mathcal{D}$ and every $r \in\{1, \ldots, s\}$,

$$
\begin{array}{rll}
w S v \leftrightharpoons & \text { either } & v \in\left\{\left\langle a, \alpha_{r}^{s+1}\right\rangle,\left\langle a, \beta_{r}^{s+1}\right\rangle\right\} \text { and } \mathfrak{M}^{\prime}, w \not \vDash P_{r}(a) \\
& \text { or } & v \in\left\{\left\langle a, \alpha_{s+1}^{s+1}\right\rangle,\left\langle a, \beta_{s+1}^{s+1}\right\rangle\right\},
\end{array}
$$

and let $R^{\prime \prime}$ be the reflexive transitive closure of S.
Let $D^{\prime \prime}(u)=\mathcal{D}$, for every $u \in W^{\prime \prime}$.

Elimination of monadic predicate letters

Let $I^{\prime \prime}$ be an interpretation on $\left\langle W^{\prime \prime}, R^{\prime \prime}, D^{\prime \prime}\right\rangle$ such that, for every $a \in \mathcal{D}$,

- $I_{\left\langle a, \delta_{2}\right\rangle}^{\prime \prime}(P)=\mathcal{D}-\{a\}$;
- $I_{\left\langle a, \delta_{2}^{\prime}\right\rangle}^{\prime \prime}(P)=\left\{a^{\prime}\right\}$, where $a^{\prime} \equiv(a+1) \bmod |\mathcal{D}|$;
- $I_{\left\langle a, \delta_{3}\right\rangle}^{\prime \prime}(P)=\left\{a, a^{\prime}\right\}$, where $a^{\prime} \equiv(a+1) \bmod |\mathcal{D}|$;
- $I_{\left\langle a, \beta_{1}^{0}\right\rangle}^{\prime \prime}(P)=\left\{a^{\prime}\right\}$, where $a^{\prime} \equiv(a+1) \bmod |\mathcal{D}|$;
- $I_{u}^{\prime \prime}(P)=\varnothing$, for $u \in W^{\prime \prime}-\left\{\left\langle c, \delta_{2}\right\rangle,\left\langle c, \delta_{2}^{\prime}\right\rangle,\left\langle c, \delta_{3}\right\rangle,\left\langle c, \beta_{1}^{0}\right\rangle: c \in \mathcal{D}\right\}$.

Finally, let $\mathfrak{M}^{\prime \prime}=\left\langle W^{\prime \prime}, R^{\prime \prime}, D^{\prime \prime}, I^{\prime \prime}\right\rangle$.
Evidently, $I^{\prime \prime}$ satisfies the heredity condition; hence, $\mathfrak{M}^{\prime \prime}$ is an intuitionistic Kripke model.

Observe that, for any $a \in \mathcal{D}$, the submodel of $\mathfrak{M}^{\prime \prime}$ generated by the set

$$
\left\{\left\langle a, \alpha_{1}^{s+1}\right\rangle, \ldots,\left\langle a, \alpha_{n_{s+1}}^{s+1}\right\rangle,\left\langle a, \beta_{1}^{s+1}\right\rangle, \ldots,\left\langle a, \beta_{n_{s+1}}^{s+1}\right\rangle\right\}
$$

is an a-suitable model based on a frame isomorphic, under the isomorphism $f: v \mapsto\langle a, v\rangle$, to \mathfrak{F}_{0}.

Elimination of monadic predicate letters

Sublemma

For every $w \in W^{\prime}$ and $a \in \mathcal{D}$,

$$
\mathfrak{M}^{\prime \prime}, w \not \vDash A_{1}^{s}(a) \quad \text { and } \quad \mathfrak{M}^{\prime \prime}, w \not \models B_{1}^{s}(a) .
$$

Sublemma

For every $w \in W^{\prime}$ and $a \in \mathcal{D}$,

$$
\mathfrak{M}^{\prime \prime}, w \not \models A_{1}^{s}(a) \quad \text { and } \quad \mathfrak{M}^{\prime \prime}, w \not \models B_{1}^{s}(a) .
$$

Sublemma

$\mathfrak{M}^{\prime \prime}, v \models^{g} \psi^{\prime}$, for every $\psi \in \operatorname{sub}\left(\bar{\varphi}^{\#}\right)$, every $v \in W^{\prime \prime}-W^{\prime}$ and every assignment g.

Sublemma

For every $w \in W^{\prime}$ and $a \in \mathcal{D}$,

$$
\mathfrak{M}^{\prime \prime}, w \not \models A_{1}^{s}(a) \quad \text { and } \quad \mathfrak{M}^{\prime \prime}, w \not \models B_{1}^{s}(a) .
$$

Sublemma

$\mathfrak{M}^{\prime \prime}, v \models^{g} \psi^{\prime}$, for every $\psi \in \operatorname{sub}\left(\bar{\varphi}^{\#}\right)$, every $v \in W^{\prime \prime}-W^{\prime}$ and every assignment g.

We now show that $\mathfrak{M}^{\prime \prime}, w_{n} \not \vDash\left(\bar{\varphi}^{\#}\right)^{\prime}$.
To that end, we prove that, for every $w \in W^{\prime}$, every $\theta \in \operatorname{sub}\left(\bar{\varphi}^{\#}\right)$ and every assignment g,

$$
\mathfrak{M}^{\#}, w \models^{g} \theta \quad \Longleftrightarrow \quad \mathfrak{M}^{\prime \prime}, w \models^{g} \theta^{\prime} .
$$

Let $\theta=P_{r}(x)$, and so $\theta^{\prime}=A_{r}^{s+1}(x) \vee B_{r}^{s+1}(x)$, for some $r \in\{1, \ldots, s\}$. Assume $\mathfrak{M}^{\#}, w \not \vDash P_{r}(a)$. By definition of $\mathfrak{M}^{\prime \prime}$, both $w R^{\prime \prime}\left\langle a, \alpha_{r}^{s+1}\right\rangle$ and $w R^{\prime \prime}\left\langle a, \beta_{r}^{s+1}\right\rangle$.
Then, both $\mathfrak{M}^{\prime \prime},\left\langle a, \alpha_{r}^{s+1}\right\rangle \not \vDash A_{r}^{s+1}(a)$ and $\mathfrak{M}^{\prime \prime},\left\langle a, \beta_{r}^{s+1}\right\rangle \not \vDash B_{r}^{s+1}(a)$.
Hence, by heredity, $\mathfrak{M}^{\prime \prime}, w \not \vDash A_{r}^{s+1}(a)$ and $\mathfrak{M}^{\prime \prime}, w \not \vDash B_{r}^{s+1}(a)$.
Therefore, $\mathfrak{M}^{\prime \prime}, w \not \vDash A_{r}^{s+1}(a) \vee B_{r}^{s+1}(a)$.

Elimination of monadic predicate letters

Conversely, assume $\mathfrak{M}^{\prime \prime}, w \not \vDash A_{r}^{s+1}(a) \vee B_{r}^{s+1}(a)$. Then, $\mathfrak{M}^{\prime \prime}, w \not \vDash A_{r}^{s+1}(a)$ and $\mathfrak{M}^{\prime \prime}, w \not \vDash B_{r}^{s+1}(a)$. Hence, there exist $u^{\prime}, u^{\prime \prime} \in W^{\prime \prime}$ and i, j (corresponding to r) such that $u^{\prime}, u^{\prime \prime} \in w \uparrow$ and

$$
\begin{array}{rlrl}
u^{\prime} & \models A_{1}^{s}(a) ; & u^{\prime} \not \models B_{1}^{s}(a) ; & u^{\prime} \not \models A_{i}^{s}(a) ; \quad u^{\prime} \not \models B_{j}^{s}(a) ; \\
u^{\prime \prime} & =B_{1}^{s}(a) ; \quad u^{\prime \prime} \not \models A_{1}^{s}(a) ; \quad u^{\prime \prime} \not \models A_{i}^{s}(a) ; \quad u^{\prime \prime} \not \models B_{j}^{s}(a) .
\end{array}
$$

We show that $u^{\prime}=\left\langle a, \alpha_{r}^{s+1}\right\rangle$ and $u^{\prime \prime}=\left\langle a, \beta_{r}^{s+1}\right\rangle$.
Since $u^{\prime} \models A_{1}^{s}(a)$ and $u^{\prime \prime} \models B_{1}^{s}(a)$, by the first sublemma, $u^{\prime}, u^{\prime \prime} \in W^{\prime \prime}-W^{\prime}$. Therefore, from $u^{\prime} \notin B_{1}^{s}(a)$ and $u^{\prime \prime} \notin A_{1}^{s}(a)$ we obtain that $u^{\prime}, u^{\prime \prime} \in\{a\} \times W_{0}$. Hence,

$$
\begin{array}{rrrr}
\neg u^{\prime} R^{\prime \prime}\left\langle a, \alpha_{1}^{s}\right\rangle ; & u^{\prime} R^{\prime \prime}\left\langle a, \beta_{1}^{s}\right\rangle ; & u^{\prime} R^{\prime \prime}\left\langle a, \alpha_{i}^{s}\right\rangle ; & u^{\prime} R^{\prime \prime}\left\langle a, \beta_{j}^{s}\right\rangle ; \\
\neg u^{\prime \prime} R^{\prime \prime}\left\langle a, \beta_{1}^{s}\right\rangle ; & u^{\prime \prime} R^{\prime \prime}\left\langle a, \alpha_{1}^{s}\right\rangle ; & u^{\prime \prime} R^{\prime \prime}\left\langle a, \alpha_{i}^{s}\right\rangle ; & u^{\prime \prime} R^{\prime \prime}\left\langle a, \beta_{j}^{s}\right\rangle .
\end{array}
$$

Now, in \mathfrak{F}_{0}, and hence in \mathfrak{F}^{a}, only worlds of level $s+1$ see more than one world of level s. Therefore, u^{\prime} and $u^{\prime \prime}$ are worlds of level $s+1$. Then, $u^{\prime}=\left\langle a, \alpha_{r}^{s+1}\right\rangle, u^{\prime \prime}=\left\langle a, \beta_{r}^{s+1}\right\rangle$, and $w R^{\prime \prime}\left\langle a, \alpha_{r}^{s+1}\right\rangle, w R^{\prime \prime}\left\langle a, \beta_{r}^{s+1}\right\rangle$. Hence, by definition of $R^{\prime \prime}$, we obtain $\mathfrak{M}^{\#}, w \not \vDash P_{r}(a)$.

Elimination of monadic predicate letters

The cases $\theta=\psi \vee \chi, \theta=\psi \wedge \chi$ and $\theta=\exists x \psi$ are straightforward．
Assume $\mathfrak{M}^{\#}, w \not \not ㇒ ⿻^{g} \psi \rightarrow \chi$ ．Then， $\mathfrak{M}^{\#}, v \not \models^{g} \psi$ and $\mathfrak{M}^{\#}, v \not \vDash^{g} \chi$ ，for some v such that $w R^{\prime} v$（and so $w R^{\prime \prime} v$ ）．
By inductive hypothesis， $\mathfrak{M}^{\prime \prime}, v \not \models^{g} \psi^{\prime}$ and $\mathfrak{M}^{\prime \prime}, v \not \not^{g} \chi^{\prime}$ ．
Therefore， $\mathfrak{M}^{\prime \prime}, w \not \neq g^{g} \psi^{\prime} \rightarrow \chi^{\prime}$ ．
Conversely，assume $\mathfrak{M}^{\prime \prime}, w \not \not ㇒ ⿻^{g} \psi^{\prime} \rightarrow \chi^{\prime}$ ．Then， $\mathfrak{M}^{\prime \prime}, v \models^{g} \psi^{\prime}$ and $\mathfrak{M}^{\prime \prime}, v \not \not ㇒ ⿻^{g} \chi^{\prime}$ ，for some v such that $w R^{\prime \prime} v$ ．
By the second sublemma，$v \in W^{\prime}$ ，and so $w R^{\prime} v$ ． Hence，by inductive hypothesis， $\mathfrak{M}^{\#}, v \models^{g} \psi$ and $\mathfrak{M}^{\#}, v \not \not ㇒ ⿻^{g} \chi$ ． Therefore， $\mathfrak{M}^{\#}, w \not \vDash^{g} \psi \rightarrow \chi$ ．

Elimination of monadic predicate letters

Assume $\mathfrak{M}^{\#}, w \not \neq^{g} \forall x \psi$.
Then, $\mathfrak{M}^{\#}, v \not{\neq g^{\prime}}^{\psi}$, for some v such that $w R^{\prime} v\left(\right.$ and so $\left.w R^{\prime \prime} v\right)$ and some g^{\prime} such that $g^{\prime} \stackrel{x}{=} g$.
By inductive hypothesis, $\mathfrak{M}^{\prime \prime}, v \neq g^{g^{\prime}} \psi^{\prime}$. Therefore, \mathfrak{M}, $w \not \vDash^{g} \forall x \psi^{\prime}$.
Conversely, assume $\mathfrak{M}^{\prime \prime}, w \not \vDash^{g} \forall x \psi^{\prime}$.
Then, $\mathfrak{M}^{\prime \prime}, v \not \vDash^{g^{\prime}} \psi^{\prime}$, for some v such that $w R^{\prime \prime} v$ and some g^{\prime} such that $g^{\prime} \stackrel{x}{=} g$.
By the second sublemma, $v \in W$, and so $w R^{\prime} v$.
Hence, by inductive hypothesis, $\mathfrak{M}^{\#}, v \not \mathcal{l}^{g^{\prime}} \psi$.
Therefore, $\mathfrak{M}^{\#}, w \not \mathcal{}^{g} \forall x \psi$.
This completes the induction.
Since $w_{n} \in W^{\prime}$, it follows from the claim proven by induction that $\mathfrak{M}^{\prime \prime}, w_{n} \not \vDash\left(\bar{\varphi}^{\#}\right)^{\prime}$. Therefore, $\left(\bar{\varphi}^{\#}\right)^{\prime} \notin$ QInt.cd ${ }_{w f i n}$.

Elimination of monadic predicate letters

Assume $\mathfrak{M}^{\#}, w \not \forall^{g} \forall x \psi$.
Then, $\mathfrak{M}^{\#}, v \not{\neq g^{\prime}}^{\psi}$, for some v such that $w R^{\prime} v\left(\right.$ and so $\left.w R^{\prime \prime} v\right)$ and some g^{\prime} such that $g^{\prime} \stackrel{x}{=} g$.
By inductive hypothesis, $\mathfrak{M}^{\prime \prime}, v \neq g^{g^{\prime}} \psi^{\prime}$. Therefore, \mathfrak{M}, $w \not \vDash^{g} \forall x \psi^{\prime}$.
Conversely, assume $\mathfrak{M}^{\prime \prime}, w \not \vDash^{g} \forall x \psi^{\prime}$.
Then, $\mathfrak{M}^{\prime \prime}, v \not \vDash^{g^{\prime}} \psi^{\prime}$, for some v such that $w R^{\prime \prime} v$ and some g^{\prime} such that $g^{\prime} \stackrel{x}{=} g$.
By the second sublemma, $v \in W$, and so $w R^{\prime} v$.
Hence, by inductive hypothesis, $\mathfrak{M}^{\#}, v \not \mathcal{l}^{g^{\prime}} \psi$.
Therefore, $\mathfrak{M}^{\#}, w \not \mathcal{}^{g} \forall x \psi$.
This completes the induction.
Since $w_{n} \in W^{\prime}$, it follows from the claim proven by induction that $\mathfrak{M}^{\prime \prime}, w_{n} \not \vDash\left(\bar{\varphi}^{\#}\right)^{\prime}$. Therefore, $\left(\bar{\varphi}^{\#}\right)^{\prime} \notin$ QInt.cd ${ }_{w f i n}$.
Case QKC.cd ${ }_{w f i n}$: just add a top point to $\mathfrak{M}^{\prime \prime}$.

We, thus, obtain the following:

Theorem

Every logic between QInt $_{\text {wfin }}$ and $\mathbf{Q K C . c d}{ }_{\text {wfin }}$ is Π_{1}^{0}-hard in languages with three individual variables and a single monadic predicate letter.

Elimination of monadic predicate letters

In particular, we obtain the following:

Corollary

Let $L \in\{\mathbf{Q I n t}, \mathbf{Q K P}, \mathbf{Q L M}, \mathbf{Q K C}\}$. Then, $L_{w f i n}$ and $L . \mathbf{c d}_{w f i n}$ are Π_{1}^{0}-hard in languages with three individual variables and a single monadic predicate letter.

Since every consistent propositional superintuitionistic logic distinct from the classical propositional logic $\mathbf{C l}$ and axiomatized by a formula with a single proposition letter is a sublogic of KC [Nishimura, 1960], our theorem also implies the following:

Corollary

Let $L=\mathbf{I n t}+\varphi$, where φ is a formula with a single proposition letter, and let $L \subset \mathbf{C l}$. Then, $\mathbf{Q} L_{w f i n}$ and $\mathbf{Q} L . \mathbf{c d}_{w \text { fin }}$ are Π_{1}^{0}-hard in languages with three individual variables and a single monadic predicate letter.

- A. Church. A note on the "Entscheidungsproblem", The Journal of Symbolic Logic, 1, 1936, pp. 40-41.
- S. Kripke. The undecidability of monadic modal quantification theory, Zeitschrift für Matematische Logik und Grundlagen der Mathematik, 8, 1962, pp. 113-116.
- S. Maslov, G. Mints and V. Orevkov. Unsolvability in the constructive predicate calculus of certain classes of formulas containing only monadic predicate variables, Soviet Mathematics Doklady, 6, 1965, pp. 918-920.
- D. Gabbay. Semantical Investigations in Heyting's Intuitionistic Logic, D. Reidel, 1981.
- D. Gabbay and V. Shehtman. Undecidability of modal and intermediate first-order logics with two individual variables, The Journal of Symbolic Logic, 58, 1993, pp. 800-823.
- F. Wolter and M. Zakharyaschev. Decidable fragments of first-order modal logics, The Journal of Symbolic Logic, 66, 2001, pp. 1415-1438.
- R. Kontchakov, A. Kurucz and M. Zakharyaschev. Undecidability of first-order intuitionistic and modal logics with two variables, Bulletin of Symbolic Logic, 11, 2005, pp. 428-438.
- M. Rybakov and D. Shkatov. Undecidability of first-order modal and intuitionistic logics with two variables and one monadic predicate letter, Studia Logica, 107:4, 2019, pp. 695-717.
- M. Rybakov and D. Shkatov. Algorithmic properties of first-order modal logics of the natural number line in restricted languages, Advances in Modal Logic, eds. Nicola Olivetti, Rineke Verbrugge, Sara Negri and Gabriel Sandu, College Publications, 2020, 523-539.
- M. Rybakov and D. Shkatov. Algorithmic properties of first-order modal logics of linear Kripke frames in restricted languages, Journal of Logic and Computation, 31:5, 2021, pp. 1266-1288.
- M. Rybakov and D. Shkatov. Algorithmic properties of first-order modal logics of finite Kripke frames in restricted languages, Journal of Logic and Computation, 30:7, 2020, pp. 1305-1329.
- M. Rybakov and D. Shkatov. Algorithmic properties of first-order superintuitionistic logics of finite Kripke frames in restricted languages, Journal of Logic and Computation, 31:2, 2021, pp. 494-522.

Thank you!

[^0]: Let $L \in\{\mathbf{Q I n t}, \mathbf{Q K P}, \mathbf{Q L M}, \mathbf{Q K C}, \mathbf{Q L C}\}$.
 Then, $L_{w f i n}$ and L.cd $\mathbf{c f i n}$ are both Π_{1}^{0}-hard and Σ_{1}^{0}-hard in languages with three individual variables and predicate letters of arity at most two.

