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Motivation

• Classical decision problem (David Hilbert): find an algorithm
deciding validity in the classical first-order logic QCl.

• Solution: (Alonzo Church 1936, Alan Turing 1937): QCl is
undecidable.

• Classical decision problem as a classification problem: identify
the “maximal” decidable and the “minimal” undecidable
fragments of QCl.

• Criteria:
• the quantifier prefix: ∃∗∀∗ decidable, ∀3∃∗ undecidable;
• the number of variables: 2 decidable, 3 undecidable;
• the number and arity of predicate letters: any number of monadic

decidable, a single binary undecidable.
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Motivation

• Non-classical decision problem as a classification problem:
identify the “maximal” decidable and the “minimal” undecidable
fragments of FO modal and superintuitionistic logics.

• S. Kripke 1962 Every modal logic validated by S5 frames is
undecidable with two monadic predicate letters: write
3(P1(x) ∧ P2(y)) for R(x, y) to obtain an embedding of an
undecidable fragment of QCL (“Kripke trick”).
NB This result can be strenghened to one monadic letter:

• R(x, y) 7→ 3(P (x) ∧3P (y));
• R(x, y) 7→ ¬3(P (x) ∧ P (y)), for a sib-relation R.

• Single-variable fragments are, as a rule, decidable (K. Segerberg,
G. Fisher-Servi, H. Ono, G. Mints).

• F. Wolter and M. Zakharyaschev 2001 Monodic fragments are
decidable.
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Motivation

• S. Maslov, G. Mints, and V. Orevkov 1965 The intuitionistic
predicate logic QInt is undecidable with a single monadic
predicate letter.

• D. Gabbay and V. Shehtman 1993 Most natural predicate
superintuitionistic logics with the constant domain axiom are
undecidable in languages with two individual variables (the proof
uses three monadic predicate letters and an unrestricted supply
of proposition letters).

• R. Konchakov, A. Kurucz, and M. Zakharyaschev 2005 QInt and
every modal logic validated by S5 frames are undecidable with
two individual variables (the proof uses two binary predicate
letters and an unrestricted supply of unary letters).

• M. Rybakov, D. Shkatov 2018 QInt, as well as a number of
related logics, including those containing the constant domain
axiom, are undecidable in languages with two individual variables
and a single monadic predicate letter.
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This talk

Let Lwfin be the logic of finite (by the number of worlds) L-frames.
In this talk, we prove that:

• Every logic between QKwfin and one of QS5wfin , QGL.3wfin ,
QGrz.3wfin is not r.e. (Π0

1-hard) in languages with three
individual variables and an unrestricted supply of unary letters.

• Every logic between QKwfin and one of QKTBwfin , QGLwfin ,
QGrzwfin is not r.e. in languages with three individual variables
and a single unary letters.

• (The positive fragment of) every logic between QIntwfin and
QLCwfin is not r.e. in languages with three individual variables
and an unrestricted supply of unary letters.

• (The positive fragment of) every logic between QIntwfin and
QKCwfin is not r.e. in languages with three individual variables
and a single unary letter.

• The same for the logics with the constant domain axiom.

NB D. Skvortsov 1995 QIntwfin is not r.e.
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Language

Intuitionostic formulas:

ϕ := Pn(x1, . . . , xn) | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | ∀x ϕ | ∃x ϕ

Modal formulas:

ϕ := Pn(x1, . . . , xn) | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | ∀x ϕ | ∃x ϕ | 2ϕ

We use the standard abbreviations:

¬ϕ = ϕ→ ⊥;
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ);
3ϕ = ¬2¬ϕ.
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Kripke semantics

Kripke frame is a pair F = 〈W,R〉; for the intuitionistic language R is
reflrxive, transitive, and antisymmetric.

Expanding domains. For a frame 〈W,R〉 consider a sysytem
(Dw)w∈W of non-empty sets (domains) such that

(∗) wRw′ =⇒ Dw ⊆ Dw′ .

For every w ∈W define a classical model Mw = (Dw, Iw).
For the intuitionistic case we aditionally claim:

wRw′ =⇒ Iw(Pn) ⊆ Iw′(Pn).

This gives us a first-order Kripke model M = (W,R,D, I) is a Kripke
model, where D = (Dw)w∈W and I = (Iw)w∈W .

(Locally) constant domains. Replace (∗) with cd-condition:

(∗∗) wRw′ =⇒ Dw = Dw′ .
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Predicate Kripke frames: an example
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Kripke semantics

Truth relation (intuitionistic language):

• M, w |=g P (x1, . . . , xn) if 〈g(x1), . . . , g(xn)〉 ∈ Pw;

• M, w 6|=g ⊥;

• M, w |=g ϕ ∧ ψ if M, w |=g ϕ and M, w |=g ψ;

• M, w |=g ϕ ∨ ψ if M, w |=g ϕ or M, w |=g ψ;

• M, w |=g ϕ→ ψ if M, w′ |=g ϕ implies M, w′ |=g ψ, for any w′ ∈ R(w);

• M, w |=g ∃xϕ if M, w |=g′ ϕ, for some g′ s.t. g′
x
= g and g′(x) ∈ Dw;

• M, w |=g ∀xϕ if M, w′ |=g′ ϕ, for every w′ ∈ R(w) and every g′

s.t. g′
x
= g and g′(x) ∈ Dw′ .
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Kripke semantics

Truth relation (modal language):

• M, w |=g P (x1, . . . , xn) if 〈g(x1), . . . , g(xn)〉 ∈ Pw;

• M, w 6|=g ⊥;

• M, w |=g ϕ ∧ ψ if M, w |=g ϕ and M, w |=g ψ;

• M, w |=g ϕ ∨ ψ if M, w |=g ϕ or M, w |=g ψ;

• M, w |=g ϕ→ ψ if M, w |=g ϕ implies M, w |=g ψ;

• M, w |=g ∃xϕ if M, w |=g′ ϕ, for some g′ s.t. g′
x
= g and g′(x) ∈ Dw;

• M, w |=g ∀xϕ if M, w |=g′ ϕ, for every g′ s.t. g′
x
= g and g′(x) ∈ Dw;

• M, w |=g 2ϕ if M, w′ |=g ϕ, for every w′ ∈ R(w).

• M, w |= ϕ(x1, . . . , xn) if M, w |=g ϕ(x1, . . . , xn), for every g such
that g(x1), . . . , g(xn) ∈ Dw;

• M |= ϕ if M, w |= ϕ, for every w ∈W ;

• F |= ϕ if M |= ϕ, for every model M based over F.
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Logics

The logics under consideration are:

• QCl, the classical predicate logic;

• QClfin , the classical logic of finite models;

• QK, the modal logic of all frames;

• QL = QK⊕ L, for a normal modal propositional logic L;

• QInt, the logic of all intuitionistic frames;

• QLC, the logic of linear intuitionistic frames;

• QKC, the logic of convergent intuitionistic frames;

• Lwfin , the logic of all finite frames of L;

• L.cdwfin , the logic of all finite frames of L with cd-condition.

Clearly, QInt ⊂ QKC ⊂ QLC ⊂ QCl.

Let QCl+62
fin (3) be the positive fragment of QClfin with three

variables and predicate letters of arity at most two.

It is known that QCl+62
fin (3) is Π0

1-complete.
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Embedding of QCl+62
fin (3) into QKwfin

Let ϕ be a classical formula (in the language of QCl+62
fin (3)).

Let
A1 = ∀x3T (x);

A2 = ∀x∀y (x ≈ y ↔ 2(T (x)↔ T (y))).

Observe that A2 implies that ≈ is an equivalence relation.
Let A = A1 ∧A2 and let Congr be the formula asserting that ≈ is a
congruence with respect to the predicate letters of ϕ, i.e., a
conjunction of formulas

∀x∀y (x ≈ y → (P (x)→ P (y)));
∀x∀y∀z (x ≈ y → ((S(z, x)→ S(z, y)) ∧ (S(x, z)→ S(y, z))),

where P ranges over the monadic, and S binary, predicate letters of ϕ.
Lastly, let

ϕ = A ∧ Congr → ϕ.

Observe that ϕ contains three individual variables.
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Embedding of QCl+62
fin (3) into QKwfin

Lemma

Let L ∈ {QK,QS5,QGL.3,QGrz.3}. The following statements are
equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕ ∈ Lwfin ;

(3) ϕ ∈ L.cdwfin .

Theorem

Every logic in [QKwfin ,QGL.3.cdwfin ], [QKwfin ,QGrz.3.cdwfin ],
and [QKwfin ,QS5wfin ] is Π0

1-hard in languages with three individual
variables and predicate letters of arity at most two.

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QIntwfin 14 / 48



Embedding of QCl+62
fin (3) into QKwfin

Lemma

Let L ∈ {QK,QS5,QGL.3,QGrz.3}. The following statements are
equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕ ∈ Lwfin ;

(3) ϕ ∈ L.cdwfin .

Theorem

Every logic in [QKwfin ,QGL.3.cdwfin ], [QKwfin ,QGrz.3.cdwfin ],
and [QKwfin ,QS5wfin ] is Π0

1-hard in languages with three individual
variables and predicate letters of arity at most two.

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QIntwfin 14 / 48



Embedding of QCl+62
fin (3) into QKwfin

Lemma

Let L ∈ {QK,QS5,QGL.3,QGrz.3}. The following statements are
equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕ ∈ Lwfin ;

(3) ϕ ∈ L.cdwfin .

Theorem

Every logic in [QKwfin ,QGL.3.cdwfin ], [QKwfin ,QGrz.3.cdwfin ],
and [QKwfin ,QS5wfin ] is Π0

1-hard in languages with three individual
variables and predicate letters of arity at most two.

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QIntwfin 14 / 48



Eliminating of binary letters

Let P be a binary predicate letters of ϕ.
Let Q1 and Q2 be monadic predicate letters, not occurring in ϕ.
Lastly, let ·σ be the function substituting 3(Q1(x) ∧Q2(y)) for
P (x, y).

Lemma

The following statements are equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕσ ∈ QKwfin ;

(3) ϕσ ∈ QK.cdwfin .

Proof.
(1)⇒ (2)⇒ (3) are clear.
We explain (3)⇒ (1) as ¬(1)⇒ ¬(3).
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Eliminating of binary letters

¬(1)⇒ ¬(3):

Assume ϕ 6∈ QClfin . Then, µ 6 ϕ, for some classical model µ = 〈D, I〉
with D = {a0, a1, . . . , an}. We define a QK.cdwfin -model M and show
that M, w 6|= ϕ, for some w ∈W .
Idea:

· · ·
wanan

w0

wa1a2wa1a1

We want: wab |= Q1(c) ∧Q2(d) ⇐⇒ c = a, d = b, µ |= P (a, b).
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Assume ϕ 6∈ QClfin . Then, µ 6 ϕ, for some classical model µ = 〈D, I〉
with D = {a0, a1, . . . , an}. We define a QK.cdwfin -model M and show
that M, w 6|= ϕ, for some w ∈W . Let

• W = {w0} ∪ {wab : a, b ∈ D};
• R = {〈w0, wab〉 : a, b ∈ D};
• Dw = D, for every w ∈W ,

and let I = (Iw)w∈W be defined so that

• wab |= T (c)� c = a;

• w0 |= as ≈ at � s = t;

• Iw0
(P ) = I(P ), for every predicate letter P of ϕ;

• wab |= Q1(c)� c = a;

• wab |= Q2(c)� c = b and µ |= P (a, b);

Finally, let M = 〈W,R,D, I〉.
Then, w0 6|= ϕ. 2
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Single unary letter: modal language

...

wnn

w

w∗n

w2
n

w1
n

w0
n

¬P (a) ∧32⊥

P (a) if w |= P1(a)

P (a) if w |= P2(a)

P (a) if w |= Pn(a)

¬P (a)

Let Ak(x) = ¬P (x) ∧32⊥ ∧3n2⊥ ∧3kP (x).

Then the formula 3Ak(x) simulates Pk(x) at the world w.
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Single unary letter: modal language

Theorem

Logics QKwfin and QK.cdwfin are Π0
1-complete in the language with a

single unary predicate letter and three individual variables.

Theorem

Logics QLwfin and QL.cdwfin are Π0
1-hard in the language with a

single unary predicate letter and three individual variables, for any L
containing K and contained in one of GL, Grz, KTB.
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Some results

• Let L be a logic containing QK and contained in QGL⊕ bf or
QGrz⊕ bf or QKTB⊕ bf . Then L is Σ0

1-hard in the language
with a single unary predicate letter and two individual variables.

• Let L be a logic containing QK and contained in QS5. Then L
is Σ0

1-hard in the language with a two unary predicate letters,
two individual variables, and infinitely many proposition letters.

• Let F = 〈N, R〉, where R is a relation between < and 6. Then the
logic of F is Π1

1-hard in the language with a single unary predicate
letter, single proposition letter, and two individual variables.
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Some results

• The logic of finite frames of a logic contained in QGL⊕ bf ,
QGrz⊕ bf or QKTB⊕ bf is Π0

1-hard in the language with a
single unary predicate letter and three individual variables.

• Let L be a logic containing QwGrz and contained in
QGL.3⊕ bf or QGrz.3⊕ bf . Then the logic of L-frames is
Π1

1-hard in the language with a single unary predicate letter,
single proposition letter, and two individual variables.

• Predicate counterparts of CTL∗, CTL, LTL, ATL∗, ATL are
Π1

1-hard in the language with a single unary predicate letter and
two individual variables.
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Embedding of QCl+62
fin (3) into QInt+

wfin

We construct an embedding of QCl+62
fin (3) into positive fragment of

any logic L between QIntwfin and QLC.cdwfin .

Let
Min(x) = ∀y (x ≺ y ∨ x ≈ y);
Max(x) = ∀y (y ≺ x);

x / y = x ≺ y ∧ ∀z (x ≺ z ∧ z ≺ y → z ≈ y).

Define

A1 = ∀x∃y (x / y);
A2 = ∃xMin(x);
A3 = ∃xMax(x);
A4 = ∀x∀y∀z (x ≺ y ∧ y ≺ z → x ≺ z);
A5 = ∀x∀y (x ≺ y ∨ y ≺ x ∨ x ≈ y);
A6 = ∀x∀y (x ≺ y ∧ y ≺ x→ x ≈ y);
A7 = ∀x∀y (x ≺ y ∧ x ≈ y →Max(x));
A8 = ∀x∀y ((T (x)→ T (y))→ x ≺ y ∨ x ≈ y);
A9 = ∀x∀y (x ≺ y → (T (x)→ T (y))).

Let A be a conjunction of formulas A1 through A9.
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Embedding of QCl+62
fin (3) into QInt+

wfin

We construct an embedding of QCl+62
fin (3) into positive fragment of

any logic L between QIntwfin and QLC.cdwfin .

Also let
B1 = ∀x∀y∀z

∧
ψ∈sub(ϕ)

(q → ψ);

B2 = ∀x∀y∀z
∧

ψ∈sub(ϕ)

(ψ ∨ (ψ → q)),

and let B = B1 ∧B2.

Let C be a conjunction of the formulas

∀x (x ≈ x) ∧ ∀x∀y (x ≈ y → y ≈ x) ∧ ∀x∀y∀z (x ≈ y ∧ y ≈ z → x ≈ z);
∀x∀y

(
x ≈ y → (P (x)→ P (y))

)
;

∀x∀y∀z
(
x ≈ y → ((S(z, x)→ S(z, y)) ∧ (S(x, z)→ S(y, z))

)
,

where P ranges over the monadic, and S binary, predicate letters of ϕ.
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Lemma

Let L ∈ {QInt,QLC}. The following statements are equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕ ∈ Lwfin ;

(3) ϕ ∈ L.cdwfin .

Proof.
(2)⇒ (3): obvious.
(1)⇒ (2): technical.
(3)⇒ (1): we need it; we prove ¬(1)⇒ ¬(3).
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Embedding of QCl+62
fin (3) into QInt+

wfin

¬(1)⇒ ¬(3):

Assume ϕ 6∈ QClfin . Then, µ 6 ϕ, for some classical model µ = 〈D, I〉
with D = {a0, a1, . . . , an}. We define a QLC.cdwfin -model M and
show that M, w 6|= ϕ, for some w ∈W . Let

• W = {w0, w1, . . . , wn};
• R = {〈wk, wk−1〉 : 1 6 k 6 n}∗;
• Dw = D, for every w ∈W ,

and let I = (Iw)w∈W be defined so that

• wk |= T (as)� k 6 s;
• wk |= as ≺ at � either s < t or both s > k and t > k;

• wk |= as ≈ at � either s = t or both s > k and t > k;

• wk |= q � k 6= n;

• Iwn
(P ) = I(P ), for every predicate letter P of ϕ;

• Iwk
(P ) = Dm, for every k 6= n and m-ary predicate letter P of ϕ.

Finally, let M = 〈W,R,D, I〉. Evidently, I satisfies the heredity
condition; therefore, M is a QLC.cdwfin -model.
Then, wn 6|= ϕ. 2
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Embedding of QCl+62
fin (3) into QInt+

wfin

...

wn

wn−1

w2

w1

w0

a0 a1 a2 . . . an−1 an

a0 a1 a2 . . . an−1 an

a0 a1 a2 . . . an−1 an

a0 a1 a2 . . . an−1 an

a0 a1 a2 . . . an−1 an

Mikhail Rybakov and Dmitry Shkatov Computational complexity of QIntwfin 26 / 48



Embedding of QCl+62
fin (3) into QInt+

wfin

Theorem

Every logic between QIntwfin and QLC.cdwfin is Π0
1-hard and

Σ0
1-hard in languages with three individual variables and predicate

letters of arity at most two.

Thus, many predicate superintuitionistic logics of natural classes of
finite Kripke frames are neither recursively enumerable nor
co-recursively enumerable in such languages:

Corollary

Let L ∈ {QInt,QKP,QLM,QKC,QLC}.
Then, Lwfin and L.cdwfin are both Π0

1-hard and Σ0
1-hard in languages

with three individual variables and predicate letters of arity at most
two.
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Elimination of binary predicate letters

Let P1, . . . , Pm be the binary predicate letters of ϕ.

Let F1, G1, . . . , Fm, Gm be distinct monadic predicate letters, and
p1, r1, . . . , pm, rm distinct proposition letters, not occurring in ϕ.

Lastly, let ·σ be the function substituting (Fj(x) ∧Gj(y)→ pj) ∨ rj
for Pj(x, y), for each j ∈ {1, . . . ,m}, in ϕ.

Lemma

Let L ∈ {QInt,QKC}. The following statements are equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕσ ∈ Lwfin ;

(3) ϕσ ∈ L.cdwfin .

Proof. Similar to Kripke trick. 2
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Elimination of binary predicate letters

Let q1, . . . , qm be the proposition letters of ϕσ and let Q1, . . . , Qm be
distinct monadic predicate letters not occurring in ϕσ. Let ϕ# be the
result of substituting ∃xQi(x) for qi, for each i ∈ {1, . . . ,m}, in ϕσ.

Corollary

Let L ∈ {QInt,QKC}. The following statements are equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕ# ∈ Lwfin ;

(3) ϕ# ∈ L.cdwfin .

We, therefore, obtain the following:

Theorem

Every logic between QIntwfin and QKC.cdwfin is Π0
1-hard in

languages with three individual variables and only monadic predicate
letters.
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Elimination of monadic predicate letters

Let P1, . . . , Ps be the (monadic) predicate letters of ϕ#. We assume
that s > 2—otherwise, ϕ# already has the required form. Let P be a
monadic predicate letter distinct from P1, . . . , Ps.

We begin by defining a finite predicate frame F0 = 〈W0, R0〉 and some
special model with cd-condition on it defined for an individual a; we
assume that the domain of the model contains at least three element;
we refer to such a model as a-suitable.
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Elimination of monadic predicate letters

. . .

. . . . . . . . .. . .

. . . . . .. . . . . .

. . .

. . . . . .

δ1 δ2 δ′2δ3

α0
1 α0

2 β0
1 β0

2

α1
1α1

2α1
3β1

1β1
2β1

3

αk1 αki βk1βkj

αk+1
mβk+1

m

αs+1
1 αs+1

2
αs+1
ns+1 βs+1

1βs+1
2

βs+1
ns+1

P (a)
P (a′)

P (b),
b 6= a

P (a′)

P (a′)
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Elimination of monadic predicate letters

First, we define formulas associated with the worlds of the three
top-most levels:

D1 = ∃xP (x);
D2(x) = ∃xP (x)→ P (x);
D3(x) = P (x)→ ∀xP (x);

A0
1(x) = D2(x)→ D1 ∨D3(x);

A0
2(x) = D3(x)→ D1 ∨D2(x);

B0
1(x) = D1 → D2(x) ∨D3(x);

B0
2(x) = A0

1(x) ∧A0
2(x) ∧B0

1(x)→ D1 ∨D2(x) ∨D3(x);

A1
1(x) = A0

1(x) ∧A0
2(x)→ B0

1(x) ∨B0
2(x);

A1
2(x) = A0

1(x) ∧B0
1(x)→ A0

2(x) ∨B0
2(x);

A1
3(x) = A0

1(x) ∧B0
2(x)→ A0

2(x) ∨B0
1(x);

B1
1(x) = A0

2(x) ∧B0
1(x)→ A0

1(x) ∨B0
2(x);

B1
2(x) = A0

2(x) ∧B0
2(x)→ A0

1(x) ∨B0
1(x);

B1
3(x) = B0

1(x) ∧B0
2(x)→ A0

1(x) ∨A0
2(x).
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Elimination of monadic predicate letters

We proceed by recursion. Assume formulas associated with the worlds
of level k, where k > 1, have been defined. Let i, j and m be as in the
definition of frame F0 above; put

Ak+1
m (x) = Ak1(x)→ Bk1 (x) ∨Aki (x) ∨Bkj (x);

Bk+1
m (x) = Bk1 (x)→ Ak1(x) ∨Aki (x) ∨Bkj (x).
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Elimination of monadic predicate letters

Lemma

Let Na be an a-suitable model with a constant domain A. Then,

Na, w 6|= Akm(a) ⇐⇒ wR0α
k
m;

Na, w 6|= Bkm(a) ⇐⇒ wR0β
k
m.

Lemma

Let Na be an a-suitable model with a constant domain A and let
b ∈ A− {a}. Then, for every w ∈W0 and every k > 2,

Na, w |= Akm(b) and Na, w |= Bkm(b).
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Elimination of monadic predicate letters

Let (ϕ#)′ be the result of substituting into ϕ#, for each r ∈ {1, . . . , s},

As+1
r (x) ∨Bs+1

r (x) for Pr(x).

Lemma

Let L ∈ {QInt,QKC}. The following statements are equivalent:

(1) ϕ ∈ QClfin ;

(2) (ϕ#)′ ∈ Lwfin ;

(3) (ϕ#)′ ∈ L.cdwfin .

Proof.
(1)⇒ (2)⇒ (3): obvious.
(3)⇒ (1): we prove it as ¬(1)⇒ ¬(3).
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Elimination of monadic predicate letters

Case QInt.cdwfin :

Assume ϕ /∈ QClfin . Then M#, wn 6|= ϕ#, where M# is the model
constructed on finite linear model M with cd-condition: the domain
of any its world is D = {a0, a1, . . . , an}; we may assume that D
contains at least three elements.

We use M# to obtain a finite intuitionistic Kripke model with a
constant domain refuting (ϕ#)′.

For every a ∈ D, let Fa = 〈{a} ×W0 , R
a〉 be an isomorphic copy of

the frame F0 under the isomorphism f : v 7→ 〈a, v〉.

Let
W ′′ = W ′ ∪ (D ×W0).

Since W ′, D and W0 are finite, so is W ′′.
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Elimination of monadic predicate letters

Let S be the smallest relation on W ′′ such that

• R′ ⊆ S;

•
⋃
a∈D

Ra ⊆ S;

• for every w ∈W ′, every v ∈W ′′ −W ′, every a ∈ D and every
r ∈ {1, . . . , s},

wSv � either v ∈ {〈a, αs+1
r 〉, 〈a, βs+1

r 〉} and M′, w 6|= Pr(a)
or v ∈ {〈a, αs+1

s+1〉, 〈a, β
s+1
s+1〉},

and let R′′ be the reflexive transitive closure of S.

Let D′′(u) = D, for every u ∈W ′′.
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Elimination of monadic predicate letters

Let I ′′ be an interpretation on 〈W ′′, R′′, D′′〉 such that, for every
a ∈ D,

• I ′′〈a,δ2〉(P ) = D − {a};
• I ′′〈a,δ′2〉(P ) = {a′}, where a′ ≡ (a+ 1) mod |D|;
• I ′′〈a,δ3〉(P ) = {a, a′}, where a′ ≡ (a+ 1) mod |D|;
• I ′′〈a,β0

1〉
(P ) = {a′}, where a′ ≡ (a+ 1) mod |D|;

• I ′′u (P ) = ∅, for u ∈W ′′ − {〈c, δ2〉, 〈c, δ′2〉, 〈c, δ3〉, 〈c, β0
1〉 : c ∈ D}.

Finally, let M′′ = 〈W ′′, R′′, D′′, I ′′〉.

Evidently, I ′′ satisfies the heredity condition; hence, M′′ is an
intuitionistic Kripke model.

Observe that, for any a ∈ D, the submodel of M′′ generated by the set

{〈a, αs+1
1 〉, . . . , 〈a, αs+1

ns+1
〉, 〈a, βs+1

1 〉, . . . , 〈a, βs+1
ns+1
〉}

is an a-suitable model based on a frame isomorphic, under the
isomorphism f : v 7→ 〈a, v〉, to F0.
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Elimination of monadic predicate letters

Sublemma

For every w ∈W ′ and a ∈ D,

M′′, w 6|= As1(a) and M′′, w 6|= Bs1(a).

Sublemma

M′′, v |=g ψ′, for every ψ ∈ sub(ϕ#), every v ∈W ′′ −W ′ and every
assignment g.

We now show that M′′, wn 6|= (ϕ#)′.

To that end, we prove that, for every w ∈W ′, every θ ∈ sub(ϕ#) and
every assignment g,

M#, w |=g θ ⇐⇒ M′′, w |=g θ′.
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Elimination of monadic predicate letters

Let θ = Pr(x), and so θ′ = As+1
r (x)∨Bs+1

r (x), for some r ∈ {1, . . . , s}.

Assume M#, w 6|= Pr(a). By definition of M′′, both wR′′〈a, αs+1
r 〉 and

wR′′〈a, βs+1
r 〉.

Then, both M′′, 〈a, αs+1
r 〉 6|= As+1

r (a) and M′′, 〈a, βs+1
r 〉 6|= Bs+1

r (a).

Hence, by heredity, M′′, w 6|= As+1
r (a) and M′′, w 6|= Bs+1

r (a).

Therefore, M′′, w 6|= As+1
r (a) ∨Bs+1

r (a).
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Elimination of monadic predicate letters

Conversely, assume M′′, w 6|= As+1
r (a) ∨Bs+1

r (a). Then,
M′′, w 6|= As+1

r (a) and M′′, w 6|= Bs+1
r (a). Hence, there exist

u′, u′′ ∈W ′′ and i, j (corresponding to r) such that u′, u′′ ∈ w↑ and

u′ |= As1(a); u′ 6|= Bs1(a); u′ 6|= Asi (a); u′ 6|= Bsj (a);
u′′ |= Bs1(a); u′′ 6|= As1(a); u′′ 6|= Asi (a); u′′ 6|= Bsj (a).

We show that u′ = 〈a, αs+1
r 〉 and u′′ = 〈a, βs+1

r 〉.
Since u′ |= As1(a) and u′′ |= Bs1(a), by the first sublemma,
u′, u′′ ∈W ′′ −W ′. Therefore, from u′ 6|= Bs1(a) and u′′ 6|= As1(a) we
obtain that u′, u′′ ∈ {a} ×W0. Hence,

¬u′R′′〈a, αs1〉; u′R′′〈a, βs1〉; u′R′′〈a, αsi 〉; u′R′′〈a, βsj 〉;
¬u′′R′′〈a, βs1〉; u′′R′′〈a, αs1〉; u′′R′′〈a, αsi 〉; u′′R′′〈a, βsj 〉.

Now, in F0, and hence in Fa, only worlds of level s+ 1 see more than
one world of level s. Therefore, u′ and u′′ are worlds of level s+ 1.
Then, u′ = 〈a, αs+1

r 〉, u′′ = 〈a, βs+1
r 〉, and wR′′〈a, αs+1

r 〉, wR′′〈a, βs+1
r 〉.

Hence, by definition of R′′, we obtain M#, w 6|= Pr(a).
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Elimination of monadic predicate letters

The cases θ = ψ ∨ χ, θ = ψ ∧ χ and θ = ∃xψ are straightforward.

Assume M#, w 6|=g ψ → χ. Then, M#, v |=g ψ and M#, v 6|=g χ, for
some v such that wR′v (and so wR′′v).
By inductive hypothesis, M′′, v |=g ψ′ and M′′, v 6|=g χ′.
Therefore, M′′, w 6|=g ψ′ → χ′.

Conversely, assume M′′, w 6|=g ψ′ → χ′. Then, M′′, v |=g ψ′ and
M′′, v 6|=g χ′, for some v such that wR′′v.
By the second sublemma, v ∈W ′, and so wR′v.
Hence, by inductive hypothesis, M#, v |=g ψ and M#, v 6|=g χ.
Therefore, M#, w 6|=g ψ → χ.
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Elimination of monadic predicate letters

Assume M#, w 6|=g ∀xψ.
Then, M#, v 6|=g′ ψ, for some v such that wR′v (and so wR′′v) and

some g′ such that g′
x
= g.

By inductive hypothesis, M′′, v |=g′ ψ′. Therefore, M, w 6|=g ∀xψ′.

Conversely, assume M′′, w 6|=g ∀xψ′.
Then, M′′, v 6|=g′ ψ′, for some v such that wR′′v and some g′ such

that g′
x
= g.

By the second sublemma, v ∈W , and so wR′v.
Hence, by inductive hypothesis, M#, v 6|=g′ ψ.
Therefore, M#, w 6|=g ∀xψ.

This completes the induction.

Since wn ∈W ′, it follows from the claim proven by induction that
M′′, wn 6|= (ϕ#)′. Therefore, (ϕ#)′ /∈ QInt.cdwfin .

Case QKC.cdwfin : just add a top point to M′′. 2
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Elimination of monadic predicate letters

We, thus, obtain the following:

Theorem

Every logic between QIntwfin and QKC.cdwfin is Π0
1-hard in

languages with three individual variables and a single monadic
predicate letter.
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Elimination of monadic predicate letters

In particular, we obtain the following:

Corollary

Let L ∈ {QInt,QKP,QLM,QKC}. Then, Lwfin and L.cdwfin are
Π0

1-hard in languages with three individual variables and a single
monadic predicate letter.

Since every consistent propositional superintuitionistic logic distinct
from the classical propositional logic Cl and axiomatized by a formula
with a single proposition letter is a sublogic of KC [Nishimura, 1960],
our theorem also implies the following:

Corollary

Let L = Int + ϕ, where ϕ is a formula with a single proposition letter,
and let L ⊂ Cl. Then, QLwfin and QL.cdwfin are Π0

1-hard in
languages with three individual variables and a single monadic
predicate letter.
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Thank you!
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