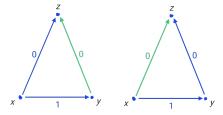
Проблема унификации в бимодальной логике доказуемости **GLB**

Лукашов Никита lnv619@gmail.com

Национальный исследовательский университет «Высшая школа экономики»

14 апреля 2023 г.



Логика GLB

Язык

- переменные p_1, p_2, \ldots, p_n ;
- константы ⊤ и ⊥:
- булевы связки $\land, \lor, \neg, \rightarrow$;
- модальности [0] и [1].

Интерпретация:

- $[0]\varphi = \mathscr{P}A \vdash \varphi \gg$
- $[1]\varphi = \&\varphi \omega$ -доказуема в PA & (доказуема с применением нескольких истинных Π_1 предложений)

Аксиомы и правила вывода

Аксиомы:

- все булевы тавтологии;
- **3** $[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$, i = 0, 1;
- $m{0}$ $[m]\varphi \rightarrow [n][m]\varphi$, для $m\leqslant n$;
- **③** $[0]\varphi$ → $[1]\varphi$.

Правила вывода:

- modus ponens;
- $\varphi \vdash [i]\varphi$, i = 0, 1.

Исследования **GL**B

Г. К. Джапаридзе, 1986 г.

- GLB не полна относительно никакого класса шкал Крипке.
- ullet Если $\langle W, R_0, R_1 \rangle$ шкала Крипке для **GLB**, то с неизбежностью $R_0 = R_1 = \varnothing$.
- арифметическая полнота GLB

Установленные факты про GLB, К. Игнатьев

- свойство интерполяции Крейга;
- теорема о неподвижной точке;
- теорема о нормальной форме.

Постановка задачи

- Исследовать тип унификации **GLB** (σ унификатор для φ в L, если $\vdash_L \sigma(\varphi)$).
- Описание допустимых правил в **GLB** $(\varphi_1/\varphi_2$ допустимо, если $\vdash_L \sigma(\varphi_1) \Rightarrow \vdash_L \sigma(\varphi_2))$

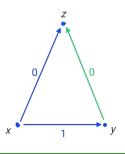
Логика Игнатьева

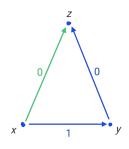
• I — подсистема GLB, полученная изоляцией аксиом (1)-(5)

Определение

Шкала Крипке $\langle W, R_0, R_1 \rangle$ называется шкалой Игнатьева если

- R_i обратно фундированное, иррефлексивное, транзитивное отношение на W, для i=0,1;
- $\forall x, y \ (xR_1y \Rightarrow \forall z \ (xR_0z \Leftrightarrow yR_0z)).$





Теорема, К. Игнатьев

Логика I корректна и полна относительно шкал Игнатьева.

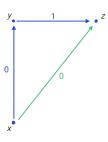
Логика J

- J подсистема GLB, получающаяся из I добавлением аксиомы
 - $[m]\varphi \to [m][n]\varphi$ для $m \leqslant n$
- GLB \vdash $[m]\varphi \rightarrow [m][n]\varphi$.

Определение

J-шкала — шкала Игнатьева, такая что:

• $\forall x, y \ (xR_m y \& yR_n x \Rightarrow xR_m z)$, если $m \leqslant n$.



Теорема, Л. Д. Беклемишев

Логика J корректна и полна относительно (конечных) J-шкал.

m-листы

• E_m — симметричное, транзитивное, рефлексивное замыкание R_m .

Определение

Классы эквивалентности E_m называются m-листами или m-слоями.

Свойства т-листов

- любой 0-лист разбивается на 1-листы;
- ullet все точки 1-листа R_0 не сравнимы между собой.
- ullet существует отношение упорядочивания R_0 на 1-листах, определяемое как

$$\alpha R_0 \beta$$
, если $\exists x \in \alpha \ \exists y \in \beta \ x R_0 y$.

Более того, так как $xR_1y\Rightarrow \forall z\;(xR_0z\Leftrightarrow yR_0z)$, то

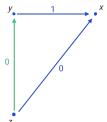
$$\alpha R_0 \beta \iff \exists y \in \beta \ \forall x \in \alpha \ x R_0 y.$$

Стратифицируемость

Определение

Шкала логики J называется стратифицированной, если

$$\forall x, y, z \ (zR_0x \& yR_1x \Rightarrow zR_0y) \tag{S}$$

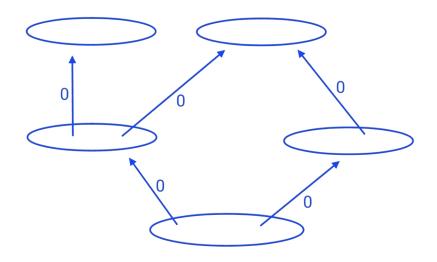


- если α и β 1-листы, то $\alpha R_0 \beta \Rightarrow$ каждая точка листа β R_0 -достижима из любой точки листа α .
- R_0 -упорядочивание в стратифицируемых шкалах полностью задаётся их R_0 -упорядочиванием 1-листов.

Теорема, Л. Д. Беклемишев

Логика J корректна и полна относительно (конечных) стратифицируемых шкал.

Стратифицируемость



Бисимуляция

Определение

n-бисимуляция между двумя моделями определяется индукцией:

- $\mathcal{W}_x \sim_0 \mathcal{W}'_{x'}$, если в x и x' истинны одни и те же пропозициональные переменные $(x \Vdash p \Leftrightarrow x' \Vdash p)$.
- ullet $\mathcal{W}_{\scriptscriptstyle X}\sim_{n+1}\mathcal{W}_{\scriptscriptstyle X'}'$, если

 - ② $\forall y \in \mathcal{W}_x \ (xR_iy \Rightarrow \exists y' \ (x'R_iy' \& \mathcal{W}_y \sim_n \mathcal{W}'_{v'}))$ для любого i = 0, 1;
 - $\forall y' \in \mathcal{W}'_{x'} \ (x'R_iy' \Rightarrow \exists y \ (xR_iy \& \mathcal{W}'_{y'} \sim_n \mathring{\mathcal{W}}_y))$ для любого i=0,1.
- ullet \sim_n отношение эквивалентности
- $\#\{[\mathcal{W}_x]_n\} < \infty$

• $d(p_i)=0, d(\perp)=0,$ $d(\varphi\circ\psi)=\max\{d(\varphi),d(\psi)\}$ для булевых связок \circ , $d([i]\varphi)=1+d(\varphi)$

Предложение, K. Fine

 $\mathcal{W}_{x} \sim_{n} \mathcal{W'}_{x'}$ тогда и только тогда, когда для любой формулы φ , такой что $d(\varphi) \leqslant n$, выполнено $(\mathcal{W}_{x}, x \Vdash \varphi \Leftrightarrow \mathcal{W'}_{x'}, x' \Vdash \varphi)$.

Подстановки

$$\bullet \overrightarrow{p} = (p_1, p_2, \ldots, p_n) \Rightarrow \varphi(\overrightarrow{p})$$

•
$$Form(\overrightarrow{p})$$

Определения

Подстановкой σ называется функция $\sigma: \overrightarrow{p} \to \mathit{Form}(\overrightarrow{p})$.

- $\sigma(\varphi(\overrightarrow{p})) \leftrightharpoons \varphi(p_1/\sigma(p_1), \dots, p_n/\sigma(p_n)) \Rightarrow \sigma : Form(\overrightarrow{p}) \rightarrow Form(\overrightarrow{p})$
- \bullet $(\tau \sigma)(p) = \tau(\sigma(p))$ для всех $p \in \overrightarrow{p}$
- ullet $\sigma_1\leqslant\sigma_2$, если $\exists au$, такая что $dash_L au(\sigma_2(p))\leftrightarrow\sigma_1(p)$ для всех $p\in\stackrel{
 ightarrow}{p}$
- σ унификатор для $\varphi(\vec{p})$, если $\vdash_L \sigma(\varphi)$
- $S=\{\sigma \mid \sigma$ унификатор для $\varphi\}$ полное, если любой унификатор для $\varphi\leqslant$ для какого-нибудь унификатора из S
- Полное множество унификаторов S для φ называется базисом, если любые два элемента из S не сравнимы относительно \leqslant .
- ullet унификатор σ для arphi самый общий, если $\{\sigma\}$ полное множество унификаторов.

Подстановки

Подстановка,применённая к модели

 $\mathcal{W}=\langle W, R_0, R_1, v
angle$ и σ можно сопоставить $\sigma(\mathcal{W})=\langle W, R_0, R_1, \sigma(v)
angle$, положив

$$\sigma(\mathcal{W}), x \Vdash p_i \iff \mathcal{W}, x \Vdash \sigma(p_i)$$

для каждого мира x и каждой переменной p_i .

Свойства $\sigma(W)$

Пусть $\varphi \in \mathit{Form}(\overrightarrow{p})$ и $\sigma : \mathit{Form}(\overrightarrow{p}) \to \mathit{Form}(\overrightarrow{p})$ — подстановка. Тогда:

- **①** Для любой модели Крипке \mathcal{W} выполнено $(\sigma(\mathcal{W}) \vDash \varphi \iff \mathcal{W} \vDash \sigma(\varphi));$
- ullet $\Gamma_L \sigma(\varphi)$ тогда и только, когда $\sigma(\mathcal{W}) \vDash \varphi$ для всех шкал логики L всех моделей Крипке \mathcal{W} ;
- ③ Для любой подстановки τ и любой модели Крипке $\mathcal W$ выполнено $au(\sigma(\mathcal W))=(au\sigma)(\mathcal W).$

Проективность

Определение

arphi проективна в логике L, если для неё существует унификатор $\sigma: Form(\overrightarrow{p}) o Form(\overrightarrow{p}),$ такой что для любого $p \in \overrightarrow{p}$

$$\varphi \vdash_{\mathcal{L}} \sigma(p) \leftrightarrow p. \tag{P}$$

- ullet σ самый общий унификатор для arphi
 - τ : $\tau(\varphi) \vdash_L \tau(\sigma(p)) \leftrightarrow \tau(p)$
 - $\vdash_L \tau(\sigma(p)) \leftrightarrow \tau(p)$
 - $\tau \leqslant \sigma$
- (P) $\Leftrightarrow \varphi \vdash_L \sigma(\psi) \leftrightarrow \psi$ для формулы $\psi \in \mathit{Form}(\overrightarrow{p})$

Предложение

Множество подстановок, удовлетворяющих свойству (P), замкнуто относительно композиции, независимо от того, унифицируют ли они φ или нет.

Результаты для **GL**

Теорема 1, С. Гильярди, 2000 г.

Формула φ является проективной в GL тогда и только тогда, когда $MOD_{GL}(\varphi)$ обладает свойством расширения.

Определения

Вариантом модели Крипке $\mathcal{W} = \langle W, R \, r, v \rangle$ называется такая модель Крипке $\mathcal{W}' = \langle W, R, r, v' \rangle$, что v(x) = v'(x) для всех миров x, кроме корня. Класс K моделей Крипке обладает свойством расширения, если для любой $\mathcal{W} = \langle W, R, r, v \rangle$, такой что $\mathcal{W}_x \in K$ для всех $x \neq r$, найдётся её вариант \mathcal{W}' , такой что $\mathcal{W}' \in K$.

Теорема 2, С. Гильярди, 2000 г.

Любая унифицируемая формула φ в GL имеет конечный базис унификаторов.

Идея доказательства Гильярди

Теорема 1, С. Гильярди, 2000 г.

Формула φ является проективной в GL тогда и только тогда, когда $MOD_{GL}(\varphi)$ обладает свойством расширения.

- $a \subseteq \overrightarrow{p}$
- ullet $heta_{arphi}^{a}$ обладает свойством (P)

 $m{ heta}_{arphi}^{a}(x) = egin{cases} arphi
ightarrow x, \ \mathrm{ec}$ ли $x \in a, \ arphi \wedge x, \ \mathrm{ec}$ ли $x
otin a. \end{cases}$

Предложение

Пусть $\varphi \in \mathit{Form}(\overrightarrow{p}), a \subseteq \overrightarrow{p}, (\mathcal{W}, r) \in \mathit{MOD}_{\mathit{GL}}$. Тогда

- $oldsymbol{v}(r)=a$ в модели $heta_{arphi}^{oldsymbol{a}}(\mathcal{W})$, иначе.

Эквивалентность унификации в GLB и J

$$\bullet \ \ \textit{M}(\varphi) := \bigwedge_{[0]\psi \in \textit{Sub}(\varphi)} ([0]\psi \to [1]\psi)$$

•
$$M^+(\varphi) := M(\varphi) \wedge [0]M(\varphi) \wedge [1]M(\varphi)$$

Теорема, Л. Д. Беклемишев

Следующие утверждения эквивалентны:

- **①** GLB $\vdash \varphi$;

Предложение

Подстановка σ является унификатором формулы φ логике **GLB** тогда и только тогда, когда σ является унификатором формулы $M^+(\varphi) \to \varphi$ в логике **J**.

Определения

Вариантом модели Крипке $\mathcal{W}=\langle W,\{R_i\}_{i=0}^1,r,v\rangle$ называется такая модель Крипке $\mathcal{W}'=\langle W,\{R_i\}_{i=0}^1,r,v'\rangle$, что v(x)=v'(x) для всех миров x, кроме корня. Класс K обладает свойством расширения, если для любой $\mathcal{W}=\langle W,\{R_i\}_{i=0}^1,r,v\rangle$, такой что $\mathcal{W}_x\in K$ для всех $x\neq r$, найдётся её вариант \mathcal{W}' , такой что $\mathcal{W}'\in K$.

Теорема

Формула φ проективна в **J** тогда и только тогда, когда класс её моделей $MOD_S(\varphi)$ обладает свойством расширения.

Доказательство

 (\Rightarrow) Пусть \mathcal{W} , такая что $\mathcal{W}_x \in MOD_S(\varphi)$ для всех $x \neq r$. Тогда $\sigma(\mathcal{W}) \in MOD_S(\varphi)$, где σ — соответствующий унификатор. Утверждается, что $\sigma(\mathcal{W})$ — искомый вариант \mathcal{W} . Действительно,

$$\sigma(\mathcal{W}), x \Vdash p \stackrel{def}{\iff} \mathcal{W}, x \Vdash \sigma(p) \stackrel{(P)}{\iff} \mathcal{W}, x \Vdash p,$$

Теорема

Формула φ проективна в **J** тогда и только тогда, когда класс её моделей $MOD_S(\varphi)$ обладает свойством расширения.

Доказательство

 (\Leftarrow) Пусть $MOD_S(\varphi)$ обладает свойством расширения. Нам необходимо построить для формулы φ соответствующий проективный унификатор. Положим $n=d(\varphi)$.

Определение

Две модели \mathcal{W} и \mathcal{W}' назовём 1-подобными (обозначение $\mathcal{W} \approx_1 \mathcal{W}'$), если модели (без корня), полученные из них удалением 1-листа, корня совпадают.

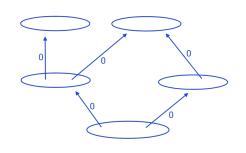
Лемма 1

Для любой модели \mathcal{W} логики **J** с корнем r, у которой $\forall x \in \mathcal{W}$ ($rR_0x \Rightarrow \mathcal{W}, x \Vdash \varphi$), найдётся подстановка $\theta_{\mathcal{W}}$, удовлетворяющая свойству (P) для формулы φ , такая что:

- $\bullet_{\mathcal{W}}(\mathcal{W}) \vDash \varphi;$
- $m{Q}$ для любой другой модели \mathcal{W}' и $x\in\mathcal{W}'$ выполнено: $\mathcal{W}_x'\modelsarphi\Rightarrow\theta_{\mathcal{W}}(\mathcal{W}_x')=\mathcal{W}_x';$
- ullet если для некоторой модели \mathcal{W}' , найдётся модель \mathcal{W}'' , такая что $\mathcal{W}' \approx_1 \mathcal{W}''$ и $\mathcal{W} \sim_{n+1} \mathcal{W}''$, то также $\theta_{\mathcal{W}}(\mathcal{W}') \models \varphi$.

Доказательство

1. Пусть нам дана модель \mathcal{W} , в которой формула φ истинна во всех мирах, кроме некторых из 1-листа корня (обозначим этот лист \mathcal{A}).



Заметим, что оценка формул вида $[0]\psi$ во всех мирах $\mathcal A$ одинакова. Тогда заменим все максимальные подформулы вида $[0]\psi$ в формуле φ на их оценку $(\top$ или $\bot)$ в листе $\mathcal A$ и получим формулу φ' .

В φ' осталась только одна модальность [1], поэтому 1-лист $\mathcal A$ является моделью логики GL по отношению R_1 . Тогда класс $MOD_{GL}(\varphi')$ обладает свойством расширения.

По теореме Гильярди для логики GL, у φ' существует проективный унификатор σ . Значит, $\forall x \in \mathcal{A} \ (\sigma(\mathcal{A}), x \Vdash \varphi')$.

Рассмотрим подстановку $\theta_{\mathcal{W}}$, определяемую как:

$$\theta_{\mathcal{W}}(p_i) = (\varphi \wedge p_i) \vee (\neg \varphi \wedge \sigma(p_i)).$$

Свойство (Р) для $\theta_{\mathcal{W}}$ выполнено по построению.

Для произвольной \mathcal{W}' , по определению, $\theta_{\mathcal{W}}(\mathcal{W}'), x \Vdash p_i \iff \mathcal{W}', x \Vdash \theta_{\mathcal{W}}(p_i)$, поэтому если $\mathcal{W}', x \Vdash \varphi$, то

$$\mathcal{W}', x \Vdash \theta_{\mathcal{W}}(p_i) \Longleftrightarrow \mathcal{W}', x \Vdash p_i.$$

Таким образом, $heta_{\mathcal{W}}(\mathcal{W}')=\mathcal{W}'$, и утверждение 2 леммы доказано.

Для любого мира $x \in \mathcal{W}$ не из 1-листа корня, имеем $\theta_{\mathcal{W}}(\mathcal{W}), x \Vdash \varphi$.

Для $x \in \mathcal{A}$:

$$\sigma(\mathcal{A}), x \Vdash \varphi' \Longrightarrow \theta_{\mathcal{W}}(\mathcal{W}), x \Vdash \varphi' \Longleftrightarrow \theta_{\mathcal{W}}(\mathcal{W}), x \Vdash \varphi.$$

- Из каждого класса эквивалентности \sim_{n+1} выберем по представителю \mathcal{W} , т. ч. $\forall x \in \mathcal{W} \ (rR_0x \Rightarrow \mathcal{W}, x \Vdash \varphi)$
- ullet $\overline{ heta}:=\prod heta_{\mathcal{W}}$ по всем $heta_{\mathcal{W}}$ из леммы 1
 - произведение конечно
 - ullet удовлетворяет свойству (P)

Лемма 2

Если для модели $\mathcal W$ формула φ истинна всюду, кроме 1-слоя корня, то $\overline{\theta}(\mathcal W) \vDash \varphi$.

Доказательство

Разложим $\overline{\theta}= heta_1 heta_{\mathcal{W}'} heta_2$, где $\mathcal{W}'\sim_{n+1}\mathcal{W}$. Тогда

$$\frac{\theta_2(\mathcal{W}) \approx_1 \mathcal{W}}{\mathcal{W}' \sim_{n+1} \mathcal{W}} \Rightarrow \theta_{\mathcal{W}'}(\theta_2(\mathcal{W})) \vDash \varphi.$$

Сомножитель θ_1 дальше эту истинность сохранит.

Наша последняя цель — предъявить подстановку θ , т. ч. $\theta(\mathcal{W}) \models \varphi$ для любой модели \mathcal{W} , и тем самым завершить доказательство теоремы.

Обозначения

Зафиксируем модель $\mathcal W$ и рассмотрим $x\in \mathcal W.$

- $\mathcal{W}[\varphi] = \{x \in \mathcal{W} \mid \mathcal{W}_x \vDash \varphi\}$
- Ранг $rk(x) = \#\{[W_y]_{n+1} \mid xR_0y \& y \in W[\varphi]\}$
- ullet $rk(x)\leqslant rk(\overline{ heta}(x))$ для любой мира $x\in\mathcal{W}$
- $\mathcal{W}, x \not\models \varphi \Rightarrow \exists y \ (\mathcal{W}, y \not\models \varphi \& \forall z \in \mathcal{W}_y \ (yR_0z \Rightarrow \mathcal{W}_y, z \Vdash \varphi))$
 - по лемме 2, $\overline{\theta}(\mathcal{W}_y) \vDash \varphi$
 - $(\overline{\theta})^{|\mathcal{W}|}(\mathcal{W}) \vDash \varphi$
- Хотим показать, что достаточно применить $\overline{\theta}$ всего N раз, где N количество классов эквивалентности по отношению \sim_{n+1} .
- ullet $\theta:=(\overline{ heta})^{ extsf{N}}$ искомый проективный унификатор для формулы arphi

Определение

Минимальный ранг модели $\mu(\mathcal{W}) = \min_{x \notin \mathcal{W}[\varphi]} \mathit{rk}(x).$

- $\mathcal{W} \not\models \varphi \Rightarrow \mu(\mathcal{W}) < \mu(\overline{\theta}(\mathcal{W}))$
- ullet Предположим $\mathcal{W}
 ot\models arphi$ и $\mu(\mathcal{W})=\mu(\overline{ heta}(\mathcal{W}))$
 - Для $x \in \mathcal{W}$, на которых достигался минимум, $rk(x) = rk(\overline{\theta}(x))$.
 - Покажем, что $\overline{\theta}(\mathcal{W}_{\mathsf{x}}) \vDash \varphi$
 - $\mathcal{W}, x \not\Vdash \varphi \Rightarrow \exists y \ (\mathcal{W}, y \not\Vdash \varphi \& \forall z \in \mathcal{W}_y \ (yR_0z \Rightarrow \mathcal{W}_y, z \Vdash \varphi))$
 - По лемме 2, $\bar{\theta}(\mathcal{W}_{y}) \vDash \varphi \Rightarrow \bar{\theta} = \theta_{1}\theta_{\mathcal{W}'}\theta_{2}$, где $\mathcal{W}' \sim_{n+1} \mathcal{W}_{y}$
 - ullet Обозначим $\mathcal{\ddot{W}}= heta_2(\mathcal{W}_{\mathsf{x}})$ и $heta'= heta_{\mathcal{W}'}$
 - По прежнему, по лемме 1, в любом мире W_y , R_0 -достижимом из y, истинна формула φ и $rk(x) = rk(\theta'(x))$

Лемма 3

 $heta'(ilde{\mathcal{W}}_z)$ является моделью формулы arphi для любого мира $z\in ilde{\mathcal{W}}.$

Лемма 3

 $heta'(ilde{\mathcal{W}}_z)$ является моделью формулы arphi для любого мира $z\in ilde{\mathcal{W}}.$

Доказательство.

Заметим, что выполнены следующие включения:

$$\{ [\tilde{\mathcal{W}}_v]_{n+1} \mid zR_0v \& v \in \tilde{\mathcal{W}}_z[\varphi] \} \subseteq \{ [\tilde{\mathcal{W}}_v]_{n+1} \mid xR_0v \& v \in \tilde{\mathcal{W}}_x[\varphi] \} \subseteq \{ [\theta'(\tilde{\mathcal{W}}_v)]_{n+1} \mid xR_0v \& v \in \theta'(\tilde{\mathcal{W}}_x)[\varphi] \}$$

Из минимальности ранга: $rk(y) = rk(z) = rk(x) = rk(\theta'(x))$, по предположению. Значит, все три множества выше совпадают.

Докажем утверждение леммы индукцией по $h_0(z)$ при, где $h_i(z)$ — длина наибольшей цепи $x_1R_ix_2R_i\dots R_ix_m$, где $x_1=z$ и $x_k\not\in \tilde{\mathcal{W}}[\varphi]$ при $k=1,\dots,m$.

База: $h_0(z)=0$. Тогда формула φ истинна во всех мирах модели $\tilde{\mathcal{W}}_z$, а значит подстановка θ' эту истинность сохранит.

С помощью включения выше также можно показать переход.

Финитный тип логик **J** и **GLB**

Теорема

Любая унифицируемая формула φ в **J** имеет конечный базис унификаторов.

Идея доказательства.

Можно показать, что для любого унификатора σ для φ найдётся некоторая проективная формула ψ , такая что

- $d(\psi) \leqslant d(\varphi)$;
- σ также является унификатором для ψ ;
- \bullet $\psi \vdash_{\mathsf{J}} \varphi$

Тогда σ будет \leqslant самого общего унификатора ψ (т. к. $\psi \vdash_J \tau(p) \leftrightarrow p$), который в свою очередь также является унификатором для φ .

Конечность базиса будет следовать из существования конечного (до доказуемой эквивалентности) множества формул глубины $d(\varphi)$.

Описание допустимых правил в логике GLB

Проективная аппроксимация

Теорема

Любая унифицируемая формула φ в **GLB** имеет конечный базис унификаторов.

• $S(\varphi) := \{ \psi \mid d(\psi) \leqslant d(\varphi) \& \psi \vdash_{GLB} \varphi \}.$

Определение

Проективная аппроксимация $\Pi(\varphi)$ формулы φ называется минимальное подмножество $S(\varphi)$, т. ч. для любой формулы $\psi \in S(\varphi)$ найдётся формула $\gamma \in \Pi(\varphi)$, т. ч. $\psi \vdash_{\textit{GLB}} \gamma$.

- каждый унификатор для φ является унификатором для некоторой формулы из $S(\varphi)$, а значит и для некоторой формулы из $\Pi(\varphi)$
- любой унифиактор для формулы φ является менее общим самого общего унификатора для некоторой формулы из $\Pi(\varphi)$

Описание допустимых правил в логике GLB

Предложение

Самые общие унификаторы для формул из $\Pi(\varphi)$ образуют базис унификаторов для формулы φ в **GLB**.

Правило φ_1/φ_2 в логике L называется допустимым, если для каждой подстановки σ , такой что $\vdash_L \sigma(\varphi_1)$, также $\vdash_L \sigma(\varphi_2)$.

Теорема

Правило φ_1/φ_2 является допустимым в логике **GLB** тогда и только тогда, когда для всех формул $\psi \in \Pi(\varphi_1)$ выполнено $\psi \vdash_{\textit{GLB}} \varphi_2$.

Заключение

Полученные результаты:

- получили описание проективных формул в логике J;
- доказали финитный тип унификации в логике GLB;
- получили описание допустимых правил в логике GLB в терминах проективной аппроксимации.

Куда двигаться дальше?

- общение полученных результатов на логику GLP
- следуя Йерабику, дать явное описание допустимых правил в терминах AR-систем

Beklemishev, L. D. (2010).

Kripke semantics for provability logic glp.

Annals of Pure and Applied Logic, 161(6):756–774.

Ghilardi, S. (2000).

Best solving modal equations.

Annals of Pure and Applied Logic, 102(3):183–198.