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1. Introduction

Monadic modal and superintuitionistic logics are, as a rule, undecidable in very poor vocabularies—in
most cases, to prove undecidability, it su�ces to use a single monadic predicate letter and two or three
individual variables [9, 11, 12, 13, 14, 8] (for undecidability of related fragments of the classical logics,
see [17, 10, 6, 7]). At the same time, the monadic fragment with equality of the classical predicate logic
QCl= is decidable [1]. Hence, it is of interest to identify settings where decidability can be obtained.

Proofs of undecidability of monadic fragments usually rely on the so-called the “Kripke trick” [4], a
simulation of a subformula P (x, y) of a classical formula with a monadic modal formula3(Q1(x)^Q2(y)).
Hence, indentifying decidable fragments involves discovering setting where the Kripke trick is not ap-
plicable. This has been done syntactically by Wolter and Zakharyaschev [18], who discovered monodic
fragments (note that these di↵er from monadic fragments) disallowing the application of modalities to
formulas with more than one parameter. Here, we consider a simple semantical setting where the Kripke
trick does not work: the monadic predicate logic with equality of a Kripke frame with finitely many
possible worlds (but, possibly, infinite domains). We also obtain precise complexity bounds for monadic
logics of classes of Kripke frames with finitely many possible worlds. This is of interest since precise
bounds beyond ⌃0

1 hardness are scarce in the literature on predicate modal logic. The observations
presented here are generalizations to the multimodal settings of results from in [5, 15].

2. Preliminaries

We consider the n-modal, where n 2 N+, predicate language Ln obtained by adding to the classical
predicate language L0 unary modal connectives 21, . . . ,2n, as well as the language L=

n
obtained by

adding to Ln a designated binary predicate letter =. The definitions of formulas are standard. A
monadic Ln-formula contains only monadic predicate letters. A monadic Ln-formula with equality

contains only monadic predicate letters and =.
By a normal n-modal predicate logic we mean a set of Ln-formulas including the classical predicate

logic QCl and the minimal normal n-modal propositional logic Kn and closed under Modus Ponens,
Substitution, Necessitation, and Generalisation. A normal n-modal predicate logic with equality ad-
ditionally contains the classical equality axioms. The minimal logic containing QCl and the n-modal
propositional logic L is denoted by QL; the minimal extension of QL containing the classical equality
axioms is denoted by Q=L. The minimal extension of an n-modal predicate logic L containing, for
each k 2 {1, . . . , n}, the Barcan formula bfk = 8x2kP (x) ! 2k8xP (x), is denoted by L.bf .

A fusion of 1-modal propositional logics L1, . . . , Ln is the logic L1⇤. . .⇤Ln = Kn�(L1[L0
2[. . .[L0

n
),

where L0
i
is obtained from Li by replacing every occurrence of 21 with 2i.

We use the framework of Kripke semantics for logics with and without equality (for more details,
see [3]; our terminology di↵ers from that adopted in [3]). There are two natural way to extend the
well-known Kripke semantics for logics without equality to logics with equality; to treat equality as
identity or as hereditary congruence. Unlike the classical logic, these two treatments of equality are not
equivalent: the formula x 6= y ! 2k(x 6= y) is valid if = is interpreted as identity, but not valid if = is
interpreted as hereditary congruence. Here, except in Section 4, we treat equality as congruence.

A Kripke n-frame is a tuple F = hW,R1, . . . , Rni, where W is a non-empty set of worlds and
R1, . . . , Rn are binary accessibility relations on W . An augmented n-frame is a tuple F = hF, Di,
where F is a Kripke n-frame and D a family (Dw)w2W of non-empty domains satisfying the expanding
domains condition: for every w, v 2 W ,

(E ) wRkv =) Dw ✓ Dv.
16
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The condition (E ) is required for soundness and completeness of predicate modal logics whose L0-fragment
is QCl. If an augmented n-frame satisfies

(C ) wRkv =) Dw = Dv,

then it is called a locally constant augmented n-frame. A model is a tuple M = hF, Ii, where F is an
augmented n-frame and I is a family (Iw)w2W of interpretations of predicate letters: Iw(P ) ✓ Dm

w
, for

every m-ary letter P .
An augmented n-frame with equality is a tuple F = hF, D,⌘i, where hF, Di is an augmented n-frame

and ⌘ is a family (⌘w)w2W of equivalence relations, with ⌘w ✓ D2
w

whenever w 2 W , satisfying the
heredity condition: for every w, v 2 W ,

(H ) wRkv =) ⌘w ✓ ⌘v.

The condition (H ) corresponds to the formula x = y ! 2k(x = y), which belongs to Q=K, and hence
to every normal modal predicate logic with equality. A model with equality is a tuple M = hF, Ii,
where F is an augmented n-frame with equality and I is a family (Iw)w2W of interpretations of predicate
letters such that ⌘w is a congruence on the classical model Mw = hDw, Iwi.

The truth relation for Ln and L=
n

is defined by usual way; in particular, if a, b 2 Dw and c̄ is a list
of elements of Dw of a suitable length, then

M, w |= a = b ↵ a ⌘w b;
M, w |= P (c̄) ↵ c̄ 2 Iw(P );
M, w |= 8x'(x, c̄) ↵ M, w |= '(d, c̄), for every d 2 Dw;
M, w |= 2k'(c̄) ↵ M, v |= '(c̄), for every v 2 Rk(w).

The following definitions concern both Ln and L=
n
; for the latter, all the models and augmented frames

should be understood as those with equality. A formula ' is true at a world w if a universal closure
of ' is true at w. A formula ' is true in a model M if ' true at every world of M; ' is valid on an
augmented n-frame F if it is true in every model over F; ' is valid on a Kripke n-frame F if ' is valid
on every augmented n-frame over F; ' is valid on a class C of augmented frames if it is valid on every
augmented frame from C .

If C is a class of Kripke n-frames and F is a Kripke frame, then

• L(C ) denotes the set of Ln-formulas valid on C ;
• Lc(C ) denotes the set of Ln-formulas valid on every locally constant augmented n-frame over
a Kripke frame from C ;

• L=(C ) denotes the set of L=
n
-formulas valid on C ;

• L=
c
(C ) denotes the set of L=

n
-formulas valid on every locally constant augmented n-frame with

equality over a Kripke frame from C .

We write L=(F) and L=
c
(F) rather than L=({F}) and L=

c
({F}), respectively.

A Kripke n-frame hW,R1, . . . , Rni is finite if W is a finite set. If L is an n-modal predicate logic
(with or without equality), then Lwfin denotes the set of formulas valid on every finite Kripke frame
validating L; this set is a normal n-modal predicate logic.

3. Main results

The following is our main technical result:

Proposition 1. Let F be a finite Kripke frame. Then, the monadic fragments with equality of the logics

L=(F) and L=
c
(F) are both decidable.

From Proposition 1 we obtain the following:

Theorem 2. Let C be a recursively enumerable class of finite Kripke n-frames. Then the monadic

fragments with equality of the logics L=(C ) and L=
c
(C ) are both in ⇧0

1.

It is known [12, Theorem 3.9] that, if L is a logic from one of the intervals [QKwfin ,QGL.3.bfwfin ],
[QKwfin ,QGrz.3.bfwfin ] or [QKwfin ,QS5wfin ], then the monadic fragment of L is ⇧0

1-hard. Hence,
Theorem 2, together with the transfer of completeness theorem for fusions [2, Theorem 4.1], give us the
following:

Corollary 3. Let L = L1 ⇤ . . . ⇤ Ln, where L1, . . . , Ln are normal 1-modal propositional logics, such

that

• Li ✓ S5 or Li ✓ GL.3 or Li ✓ Grz.3, for some i 2 {1, . . . , n};
• the class of finite Kripke frames validating L is recursively enumerable.
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Then, the monadic fragments of the logics QLwfin
, QL.bfwfin

and the monadic fragments with equality

of the logics Q=Lwfin
, Q=L.bfwfin

are all ⇧0
1-complete.

Corollary 4. Let L be one of the logics K, T, D, K4, K4.3, S4, S4.3, GL, GL.3, Grz, Grz.3,
KB, KTB, K5, K45, S5. Then, the monadic fragments of the logics QLwfin

n
, QLn.bf

wfin
and the

monadic fragments with equality of the logics Q=Lwfin
n

, Q=Ln.bf
wfin

are ⇧0
1-complete.

From Proposition 1 we also obtain the following:

Theorem 5. Let C be a decidable class of Kripke 1-frames closed under the operation of taking sub-

frames and satisfying the condition that there exists m 2 N such that |R(w)| 6 m whenever hW,Ri 2 C
and w 2 W . Then the monadic fragments of the logics L(C ), Lc(C ) and the monadic fragments with

equality of the logics L=(C ), L=
c
(C ) are decidable.

Recall that Altn is a monomodal logic complete with respect to the class of Kripke frames where
every world sees at most n worlds. Using completeness of the predicate counterpart of Altn [16], which,
using [3, Theorem 3.8.7], implies the completeness of Q=Altn, we obtain the following:

Theorem 6. The monadic fragments of logics QAlt
n
, QAlt

n
.bf , Q=Altn, and Q=Altn.bf are all

decidable.

4. Discussion

Proposition 1 and Theorem 2 remain true in the Kripke semantics with equality as identity. Propo-
sition 1 and Theorem 2 can be extended to logics of frames with distinguished worlds. All the results
remain true if logics QL.bf and Q=L.bf are replaced with logics in which, for some k, the Barcan
formula bfk is replaced with 2bfk, where 2 is a finite sequence of 21, . . . ,2n. Lastly, we note that
similar results can be obtained for superintuitionistic monadic logics [15].
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