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1. INTRODUCTION

Domino, or tiling, problems [1, 9] provide us with a rich tool allowing to estimate bounds for compu-
tational complexity of problems arising in different fields of mathematics, in particular, in algebra [4, 10]
and mathematical logic [2, 8, 14, 11, 6]. Sometimes, properties of tilings of some kind can be quite easily
expressed in a formal language, and their description can be more elegant than, say, of Turing machines
(or other computational models). Indeed, to describe a tiling, we only have to say that, for every tile,
there are appropriate tiles on the top and on the right, and that moving right-top or top-right we see
the same tile, while for a Turing machine, to describe just a configuration on some step of computation,
we have to describe a head position, a state, and symbols stored in tape cells.

Here, we consider two tiling problems, known to be, respectively, I1{-complete and ¥1-complete, and
show examples of their simulation in first-order theories and logics whose langages are enriched with
some extra expressive means [8] but restricted in the number of individual variables, the number of
predicate letters, and their arity.

2. TILING PROBLEMS WE CONSIDER

We may think of a tile as a colored 1 x 1 square, with a fixed orientation. Each edge is colored.
A tile type t consists of a specification of a color for each edge; we write B¢, ¢, @t, and Wt for the
colors of, respectively, the left, the right, the top, and the bottom edges of the tiles of type t.

Let T = {tg,...,tn} be a set of tile types. Informally, a T-tiling is an arrangement of tiles, whose
types are in 7', on a grid so that the edge colors of the adjacent tiles match, both horizontally and
vertically; see the picture below (tile-holders are in the left-bottom corners of tiles).
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The fist tiling problem we consider is the following: given a set T' = {ty,...,t,} of tile types, we are

to determine whether there exists a T-tiling f: IN x IN — T such that, for every ¢,j € IN,

(1) Q@f(i,5) =8f@+1,5);

(2) &f(,j) =af(j+1).
This problem is II{-complete [1]. The second tiling problem we consider can be obtained from the first
one by adding an extra requirement

(3) theset {j € IN: f(0,7) = to} is infinite,
i.e., claiming that there are infinitely many tiles of type to in the leftmost column. This problem is
Y1-complete [9].
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3. CLASSICAL THEORIES

Assume, for simplicity, a classical first-order language with an infinite supply of monadic predicate
letters Py, P1, Py, ... and two binary predicate letters H and V. The intending meaning of Pj(x) is
“r is placed with a tile of type t;”; also, H(x,y) means “y is to the right of 2”7, and V(x, y) means “y is
above z”. To describe an IN x IN grid, it is sufficient to say

VaIy H(z,y), YaIyV(z,y), VaVy Bz (H(z,z) AV(z,y)) + Iz(V(z,2) ANH(z,y)).
Then, we can say that we are given a T-tiling:

n

e Each tile-holder holds a unique tile: Y \/(P,- () A /\ -Pj(x)).
i=0 j#i

e The condition (1) for a T-tiling is satisfied: Vz /\(Pl(x) — Yy (H(z,y) — \/P](y)))
i=0 @t =61t

e The condition (2) for a T-tiling is satisfied: Vz /\(Pl(m) = Vy (V(z,y) — \/ P;(y))).
i=0 ®t,=@t;

It is not hard to see that the conjunction of the above formulas is satisfiable if, and only if, there exists
a T-tiling f: INx IN — T satisfying conditions (1) and (2). As a result, the Church’s theorem [3] for the
classical first-order logic follows. Since we can simulate all the predicate letters with a single binary one
without adding extra individual variables [15, 16], this gives us a short proof of the known refinement [23]
of the Church’s theorem: the satisfiability problem is undecidable for languages with a single binary
predicate letter and three individual variables. Moreover, we readily obtain undecidability (X{-hardness)
for infinite classes of theories of a binary predicate, again, with three individual variables [15, 16].

Observe that, with the use of Compactness theorem, the existence of a T-tiling satisfying (1) and (2)
is equivalent to the existance, for every n € IN, of an n x n tiling with T-tiles satisfying (1) and (2) for
all appropriate ¢ and j. Therefore, we can use only finitely many tile-holders (but their number must
be unbounded). This observation allows us to simulate T-tilings on finite models and, thus, to obtain
the Trakhtenbrot’s theorem [24, 25] for satisfiability over finite models. Again, modulo some linguistic
machinations, we obtain undecidability (II9-harness) for large classes of theories of a binary predicate
defined by infinite classes of finite models [15, 16].

Notice that undecidability of some the theories — both ¥9-hardness and I19-hardness — follow also
from proofs like in [5, 13] by means of a general technique described in [22].

4. CLASSICAL THEORIES WITH EXTRA NON-ELEMENTARY EXPRESSIVE MEANS

Having enriched the language with equality and the operator of transitive closure, we can use the
transitive closure V't of V allowing us to express (3):

Savy (V*(2,y) = 32 (2 £y AV (y,2) A Pol2))).

Notice that equality can be eliminated if we add the condition of irreflexivity, i.e., Yz =V (z,z); also,
variable z can be replaced with x. Then, adding the operator of composition o of binary relations,
we are able to express that moving right-top and top-right, we see the same tile, using the formula
VaVy ([V o H|(z,y) < [H o V](x,y)), which contains only two individual variables. Again, using ad-
ditional techniques, we can prove that the satisfiability for languages with a single binary relation,
equality, the operators of transitive closure and composition is Yi-hard even for formulas with two
variables [15]. Sometimes, the operator of transitive closure can be replaced with the operator asserting
the transitivity of a binary relation [16].

5. SOME REMARKS AND FURTHER RESULTS

Examples of the use of tiling problems for obtaining results on the algorithmic complexity of various
logics, both propositional and predicate, can be found in [2, 14, 6, 11, 19, 20, 21, 17, 18]. In particular,
the tiling problems considered here can be used to obtain complexity results for theories of trees [18]
and to prove that modal predicate logics whose Kripke frames are Noetherian orders are ITi-hard in
rather poor languages [17]; the latter result gives us an alternate argument for Kripke incompleteness
of the predicate counterpart of the Gédel-Léb logic GL [12].
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