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1. Introduction

Modal and intuitionistic propositional logics are often poly-time embeddable into their own fragments
with a few variables (typically, zero, one, or two), and similar embeddings are sometimes constructed of
fragments of logics with special properties into finite-variable fragments of those logics. The literature
on the topic is quite extensive [2, 27, 11, 12, 4, 29] and includes contributions by the authors of this
paper [3, 14, 15, 16, 17, 18, 20, 19, 21, 22, 23, 24, 25].

As a result, the validity problem for such fragments is as computationally hard as the validity
problem for the full logic. (In general, modal and superintuitionistic propositional logics, even linearly
approximable ones, may have arbitrarily hard fragments with a few variables since, for every set A ✓ N,
one can construct [26] a linearly approximable logic whose fragment with a few variables (typically zero,
one, or two) recursively encodes A. We obtain here similar embeddings for the intuitionistic modal logics
FS and MIPC, introduced by, respectively, Fisher Servi [7] and Prior [13]. These logics have been
introduced as counterparts of bimodal propositional logics, and can also be viewed as fragments of the
predicate intuitionistic logic QInt (for details, see [10]); we note that this is not the only approach
to constructing modal intuitionistic logics, cf. [5, 6, 28]. The complexity of FS and MIPC remains
unresolved, but the results presented here show that single-variable fragments of these logics have the
same complexity as the full logics.

2. Preliminaries

The intuitionistic modal language contains a countable set P of propositional variables, the constant
?, binary connectives �, ^, and !, and unary modal connectives 3 and 2. Formulas are defined in
the usual way. A formula is positive if it does not contain occurrences of ?. The set of propositional
variables of a formula ' is denoted by var '. The result of substituting a formula  for a variable p into
a formula ' is denoted by [ /p]'. The modal depth of a formula ', denoted by md ', is the maximal
number of nested modal connectives in '. The length of a formula ', defined as the number of symbols
in ' (with the binary encoding of variables), is denoted by |'|.

We define the logics FS and MIPC semantically. A Kripke frame is a pair F = hW,Ri where W is
a non-empty set of worlds and R is a partial order on W . An FS-frame is a triple F = hW,R, �i, where
hW,Ri is a Kripke frame and � is a map associating with each w 2 W a structure h�w, Swi, with �w

being a non-empty set of points and Sw a binary relation on �w such that, for every w, v 2 W ,

v 2 R(w) ) �w ✓ �v and Sw ✓ Sv

An FS-frame F = hW,R, �i is an MIPC-frame if Sw = �w ⇥�w, for every w 2 W . A valuation on
an FS-frame hW,R, �i is a map associating with each w 2 W and each p 2 P a subset V (w, p) of �w

in such a way that

v 2 R(w) ) V (w, p) ✓ V (v, p).

The pair M = hF, V i, where F is an FS-frame and V a valuation on F, is called an FS-model. An
MIPC-model is an FS-model over an MIPC-frame. The truth-relation |= is defined by recursion (here,
M is a model, w 2 W , x 2 �w, and ' is a formula):

• M, w, x |= p ↵ x 2 V (w, p) if p 2 P;
• M, w, x 6|= ?;
• M, w, x |= '1�'2 ↵ M, w, x |= '1 and M, w, x |= '2;
• M, w, x |= '1 ^ '2 ↵ M, w, x |= '1 or M, w, x |= '2;
• M, w, x |= '1 ! '2 ↵ M, v, x 6|= '1 or M, v, x |= '2 whenever v 2 R(w);
• M, w, x |= 3'1 ↵ M, w, y |= '1, for some y 2 Sw(x);
• M, w, x |= 2'1 ↵ M, v, y |= '1 whenever v 2 R(w) and y 2 Sv(x).
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A formula ' is true in a model M (notation: M |= ') if M, w, x |= ', for every world w of M and
every point x of w. A formula ' is valid an FS-frame F if ' is true in every model over F. Logics FS and
MIPC are defined as sets of formulas valid on, respectively, every FS-frame and every MIPC-frame.

3. Main results

In this section, we prove that logics FS and MIPC are polynomial-time embeddable into their own
fragments with a single propositional variable. We first poly-time embed these logics into their own
positive fragments. Let ' be a formula and f 2 P \ var '. Define

'f = [f/?]'; F1 = 36md 'f ! f ; F2 = f ! 26md 'f ; F3 =
^

p2var '
26md '(f ! p),

and put F = F1�F2�F3.

Lemma 1. Let ' be a formula, f 2 P \ var ', and L 2 {FS,MIPC}. Then,

' 2 L () F ! 'f 2 L.

Since 'f and F are both positive, the map e : ' 7! (F ! 'f ) embeds FS and MIPC into their own
positive fragments.

We next define a polytime computable function ·⇤ from the set of positive formulas to the set of
one-variable positive formulas and show that, for L 2 {FS,MIPC} and every positive ',

'⇤ 2 L () ' 2 L.

Hence, for every ',

' 2 L () e(') 2 L () e(')⇤ 2 L.

The formula '⇤ shall be obtain from ' using a substitution. We next define the formulas that shall
be substituted for propositional variables of '. These formulas, except G1, G2, and G3, are divided
into ‘levels’, indexed by elements of N; formulas of level 0 are denoted A0

i
or B0

i
, those of level 1, by

A1
i
and B1

i
, etc. We begin with G1, G2, and G3, as well as formulas of levels 0 and 1:

G1 = 3p; A1
1 = A0

1�A0
2 ! B0

1 ^B0
2 ;

G2 = 3p ! p; A1
2 = A0

1�B0
1 ! A0

2 ^B0
2 ;

G3 = p ! 2p; A1
3 = A0

1�B0
2 ! A0

2 ^B0
1 ;

A0
1 = G2 ! G1 ^G3; B1

1 = A0
2�B0

1 ! A0
1 ^B0

2 ;
A0

2 = G3 ! G1 ^G2; B1
2 = A0

2�B0
2 ! A0

1 ^B0
1 ;

B0
1 = G1 ! G2 ^G3; B1

3 = B0
1�B0

2 ! A0
1 ^A0

2.
B0

2 = A0
1�A0

2�B0
1 ! G1 ^G2 ^G3;

We proceed by recursion. Let k > 1. Suppose the formulas Ak

1 , . . . , A
k

nk
and Bk

1 , . . . , B
k

nk
have been

defined, with nk being the number of formulas of the form Ak

i
and, also, the number of formulas of

the form Bk

i
(e.g., if k = 1, then nk = 3; the recursive definition for the cases where k > 2 is to be

given). Define a linear order � on the set (N \ {0, 1})⇥ (N \ {0, 1}) as in the following picture, so that
hi, ji � hi0, j0i if, and only if, there exists a path along one or more arrows from hi, ji to hi0, j0i:

1 2 3 4 5 6 7 8 9

1

2

3
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...
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We can then define an enumeration g of the pairs hi, ji 2 (N \ {0, 1})⇥ (N \ {0, 1}) according to �,
i.e., so that g(2, 2) = 1, g(3, 2) = 2, g(3, 3) = 3, g(2, 3) = 4, etc. Now, for every i, j 2 {2, . . . , nk}, define

Ak+1
g(i,j) = Ak

1 ! Bk

1 ^Ak

i
^Bk

j
; Bk+1

g(i,j) = Bk

1 ! Ak

1 ^Ak

i
^Bk

j
,

and let nk+1 be the number of the formulas of the form Ak+1
i

(which is the same as the number of
formulas of the form Bk+1

i
) so defined; notice that nk+1 = (nk � 1)2. This completes the recursive

definition of Ak

i
and Bk

i
.

Next, put

l0 = |A0
1|+ |B0

1 |+ |A0
2|+ |B0

2 |.

Lemma 2. There exists k0 2 N such that nk > l0 · 5k whenever k > k0.

Now, let ' be a positive formula with var ' = {p1, . . . , ps}. Let k' be the least integer k such that

|'| < l0 · 5k. By Lemma 2, nk'+k0 > l0 · 5k'+k0 ; hence,

nk'+k0 > l0 · 5k'+k0 > 5k0 · |'| > |'| > s.

Lastly, define '⇤ to be the result of substituting into ', for every r 2 {1, . . . , s}, the formula

A
k'+k0

r ^B
k'+k0

r for the variable pr (this substitution is well defined since nk'+k0 > s).

We next show that '⇤ is poly-time computable from '.

Lemma 3. For every k > 0 and every i 2 {1, . . . , nk},

|Ak

i
| < l0 · 5k and |Bk

i
| < l0 · 5k.

Lemma 4. The formula '⇤
is computable in time polynomial in |'|.

Proof. It su�ces to show that |'⇤| is polynomial in |'|. Since k' is the least integer k such that

|'| < l0 · 5k, surely l0 · 5k'�1 6 |'|, and so

l0 · 5k'+k0 6 5k0+1|'|.

By Lemma 3, for every i 2 {1, . . . , nk'+k0},

|A
k'+k0

i
| < l0 · 5k'+k0 6 5k0+1|'| and |B

k'+k0

i
| < l0 · 5k'+k0 6 5k0+1|'|.

Hence, |'⇤| < 2 · 5k0+1|'|2. ⇤

To obtain the desired result, it remains to show the following:

Lemma 5. Let L 2 {FS,MIPC}. Then, for every positive formula ',

' 2 L () '⇤ 2 L.

From Lemmas 1, 4, and 5, we immediately obtain the following:

Theorem 6. Let L 2 {FS,MIPC}. Then, there exists a polynomial-time computable function embed-

ding L into its own positive one-variable fragment.

Corollary 7. Let L 2 {FS,MIPC}. Then, the positive one-variable fragment of L is polytime-

equivalent to L.

The results presented here are not immediately applicable to obtaining the computational complexity
of finite-variable fragments of intuitionistic modal logics since the complexity of full logics remains
unknown (we are only aware of decidability results [9, 31, 30, 1, 8] for modal intuitionistic logics).
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