ON THE QUANTIFIED VERSION OF THE BELNAP-DUNN MODAL LOGIC
AND SOME EXTENSIONS OF IT

ALEXANDER V. GREFENSHTEIN

The propositional Belnap—Dunn modal logic BK was introduced in [1]; the lattice of its extensions has
been studied in [2, 3, 4]. It can be viewed as conservatively expanding the least normal modal logic K by
adding ‘strong negation’ (~), which allows us to deal with ‘gaps’ (incomplete information) and ‘gluts’
(inconsistent information). On the other hand, BK can be obtained by adding material implication
(—) and the absurdity constant (L) to the logic Kepg (see [5]). The latter is the least modal expansion
of the Belnap—Dunn four-valued logic, also known as first-degree entailment and denoted by FDE (see
[6, 7]). Intuitively, the semantic values used in FDE are:

(1) T, which intuitively stands for ‘true’;

(2) F, which intuitively stands for ‘false’;

(3) N, which intuitively stands for ‘neither true nor false’;
(4) B, which intuitively stands for ‘both true and ‘false’.

Following [1], we present BK in the language
L= {/\7\/7_>7 D7 <>7Na L} -

Below we use the following abbreviations: —¢ stands for ¢ — L and ¢ < 1 (‘strong equivalence’)
stands for (p <> ) A (~ ¢ +> ~ 1)). The corresponding deductive system includes the following axiom
schemata:

CL. all the schemata of propositional classical logic in the language {A,V,—, L};
K1. (B ADY) = D(p Ay);
K2. O(p = ¢);
M1, —Op > Oy
M2. O « Oy
M3. Op & ~ O~y
M4, Cp &~ 0O~ g
SN1. ~~ @ < ;
SN2 ~ (¢ = ) & (9 A~ )
SN3. ~ (p V1) & (v~ A~ )
SN4. ~ (p A1) & (~ oV~ )

SN5. ~ L.
As for the rules, we have modus ponens and the monotonicity rules for O and <:
p p2Y =Y =Y
— MP);  ——— (MB); S ———— (MD).
P Op — Oy Cp — OY

By BK we mean the least set of L-formulas containing the axioms above and closed under the rules MP,
MB, MD.

Using the canonical models method, it was proved in [1] that BK and some natural extensions of it
are strongly complete w.r.t. appropriate Kripke-style semantics. For instance, a BK-model is a triple
(W, vT,v™) that consists of a standard Kripke frame W with two independent propositional valuations
vT,v™. Intuitively, v and v~ correspond to verification and falsification respectively. So we have two
relations I-T and IF~ such that for every propositional variable p:

M,wlFt p <= wev (p);
MwlF"p = wev (p).
The logical connective ~ is treated as a switch between the processes of verifiability and falsifiability:
MawlFt~ o = MwlF @;
MawlF"~p = M,wl-t ¢
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Since in general no restrictions are imposed on the relationship between verifiability and falsifiability,
BK turns out to be paraconsistent. Locally, the truth in BK is four-valued. As well as in FDE, these
four values are T, F, N, and B.

It is important that some natural BK-extensions are closely related to Nelson’s constructive logics N3
(see [8, 9]) and N4». The latter is a modification proposed by S. P. Odintsov of the logic N4 originally
considered in [10]. It was proved in [1] that N3 and N4™ can be faithfully embedded into the Belnapian
version BS4 of the modal logic S4 and its three-valued extension B354 respectively by providing an
analogue of the Gédel-McKinsey—Tarski translation of intuitionistic logic into S4.

Although the propositional version of BK is quite well studied, nothing has been previously known
about its quantified version. Initially, strong negation appeared in [8] in the first-order setting. It was
an approach to an alternative interpretation of negation in intuitionistic arithmetic. This approach
was supposed to make intuitionistic negation more constructive, similar to the procedure of falsification
instead of the reduction to absurdity. Such arithmetic is now known as Nelson’s arithmetic, NA, defined
no longer on the basis of intuitionistic first-order logic, but on the basis of Nelson’s first-order logic
QN3 (see [11]). Since many non-modal logics can be translated into suitable modal logics, the natural
question arises: can we do the same for Nelson’s logics? Such faithful embeddings can help us in the
study of some metamathematical properties of Nelson’s logics through the transfer of such properties
from the logics in which they are embedded. As we know from the previous paragraph, it can be done
in the propositional case. But since QN3 and QN4 are first-order (see [12] for QN4"), we would like
to find suitable first-order modal logics in which QN3 and QN4J‘ can be embedded.

It would be very natural to expect that the connection between BK-extensions and Nelson’s logics
should be appropriately inherited to the first-order case. But since the argument of S. P. Odintsov and
H. Wansing is based on the completeness of BK-extensions, our first goal is to prove the completeness
theorem for the quantified version of BK.

Let o be a first-order signature. From now on by o-formulas we mean expressions built up from
the atomic o-formulas using the connective symbols of £ and the quantifier symbols V,3 in the usual
way. Below we use capital letters for o-formulas in order to emphasize the difference between the
propositional and quantified settings. The deductive system for QBK extends the deductive system for
BK by adding the following four axiom schemata:

Q1. Vo ® — @ (z/t), where t is free for x in ®;
Q2. @ (z/t) — Jx P, where t is free for z in P;
Q3. ~Vx® + do ~ P;
Q4. ~Jx P <> Vo ~ P,

and the Bernays rules:

o - U
b — VU

b - T

BRY:  3.55 0

(BR2).

The axioms Q3 and Q4 were originally considered in Nelson’s work on constructive arithmetic [8] and
were further used in works on Nelson’s first-order logics QN4* and QN3. Now denote by Form, the
set of all o-formulas and by Sent, the set of all o-sentences (which are formulas with no free variable
occurrences, as usual). Given I' C Sent, and A C Form,,, we write I' Fqgk A if there is A" C A such
that the disjunction of A’ can be obtained from the elements of I' U QBK by means of MP, BR1, and BR2.

One of the specific features of both Nelson’s logics and QBK is the lack of closure under the usual
replacement rule. However, QBK, as well as BK, is closed under the so-called weak replacement rule,
which is rendered as

Vs o
o @) o6 -
It is also notable that the negative normal form theorem remains true for QBK, i.e. for any o-formula
® there is a o-formula ®, in which ~ stands only before atomic subformulas, such that ® < ® € QBK
(cf. [13]).

QBK-models are first-order Kripke models with expanding domains in which there are two structures
with the same domain at each world w: 2}, for verifiability, and 2, for falsifiability. For any QBK-model
M, any world w of this model, and any o-sentence ®, the relations M, w IF* ® and M, w IF~ ® are
defined by induction on the complexity of ®. If ® is atomic, we checking its verifiability and falsifiability
at the world w by looking at 2( and A, respectively. The case of strong negation is considered as



32 A. V. GREFENSHTEIN

above. Below are the remaining cases:

MwlFt AV = M,wlF" ®and M,wIF" ¥;
MwlF~ @AV = MwlF~ ® or M,wlF~ ¥,
MwlFtdVvY = M,wlF" ®or M,wl-" ¥;
MwlF~ dVvV¥ = Mwlt™ & and M,wl-" ¥;
MwlFt® =¥ = M,whk" ®or M,wl-" ¥;
MuwlF~ ® ¥ = M,wlk" ®and M,wl-" ¥;
M,wlFT 0® <= for each u € W, if wRu, then M, w IF™ &;
M,wlk™ 00 <= there exists u € W such that wRu and M,w IF~ &;
M,wlFT ©® <= there exists u € W such that wRu and M, w IF+ ®;
M,wlk= O® <= for each u € W, if wRu, then M, w IF~ ®;
M,wl-TVz® <= for each a € A, it holds that M,w IF* & (z/a);
MwlF~ Ve ® <= M,wl-~ ®(x/a) for some a € A,;
Miwlbt 32® <=  M,wlFT ®(z/a) for some a € A,;
M,wlF~ 32 ® < for each a € A, it holds that M, w IF~ @ (z/a).

The semantic consequence for QBK is defined in the standard way, using the relation IFT. We prove
that QBK is strongly complete w.r.t. this Kripke-style semantics:

Theorem 1. For any I' C Sent, and A C Form,,
I |_QBK A < I ':QBK A.

The proof of strong completeness of QBK is carried out by modifying the canonical models method
for first-order modal logics (see [14]). In fact, the resulting modification can be successfully applied to
prove the strong completeness of some others quantified modal logics with strong negation. Among the
interesting BK-extensions are:

(1) those obtained by excluding either gaps, gluts or both;
(2) those obtained by imposing restrictions (expressible by modal formulas) on accessibility relations
in Kripke frames.
Syntactically, the following axiom schemata correspond to the exclusion of gaps and gluts respectively:

ExM. oV ~ ¢;

Exp. ~ ¢ = (¢ = ¢).

Intuitively, ExM is for excluded middle, and Exp is for explosion. As for extensions of the second kind,
they are obtained by adding standard axiom schemata expressing suitable properties of accessibility

relations. In particular, denote QBK + {Exp} and QBK + {ExM} by QB3K and QBK?® respectively. We
prove the following

Theorem 2. QB3K and QBK® are strongly complete w.r.t. appropriate Kripke-style semantics.

For the quantified analogs of extensions of the second kind we also obtain similar results. In partic-
ular, we prove the strong completeness theorems for the quantified analogs of BS4 and B3S4. Let us
denote these by QBS4 and QB354 respectively.

In conclusion, we generalize the result that Nelson’s logics can be faithfully embedded into appro-
priate BK-extensions to the first-order setting as follows:

Theorem 3. The logics QN3 and QN4* can be faithfully embedded into QB3S4 and QBS4 respectively.
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