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The Go6del-Lob provability logic GL is a well-known propositional unimodal system. According to its
arithmetical interpretation, the modal connective O corresponds to the standard provability predicate
“.. is provable in Peano arithmetic PA”. As shown by Solovay [7], a formula is a theorem of GL if and
only if every its arithmetical translation is a theorem of PA. In other words, GL captures the properties
of formal provability of PA that are provable in PA itself.

The Godel-Lob provability logic GL can be also described by means of its relational semantics.
This logic is complete with respect to the class of irreflexive transitive Kripke frames without infinite
ascending chains. However, GL is only weakly complete for its relational interpretation.

Strong completeness is achieved if one considers topological (or neighbourhood) semantics of the
given system. The class of topological spaces corresponding to GL consists of all scattered topological
spaces (X, 7), where the modal connective O is interpreted as the co-derived-set operator cd,(Y) =
{reX|Wer(xecUNU\{z} CY)}

An interesting feature of GL is that this system allows cyclic and non-well-founded reasoning. In
[3, 1], it was shown that GL can be defined by means of a sequent calculus allowing non—well-founded
proofs. In [4, 5], the standard axiomatic calculus for GL was extended with non-well-founded derivations
and various topological completeness results for the obtained system were established.

In the present talk, we focus on a first-order predicate version of GL denoted by QGL. We consider
this system in a language without function symbols and constants and define it by the following axioms
and inference rules.

Azioms:

tautologies of classical propositional logic,

0(A — B) — (DA — OB),

0OA — O0OA,

O(0A — A) — OA,

Vo A(x) = Aly),

Vx (A — B) — (A — Vz B), where © ¢ FV(A).

Inference rules:

A A— B A A

mpf’ nec oA gen VoA

Thanks to Montagna [2], we know that QGL is not arithmetically complete. He also showed that

this system is not complete with respect to its Kripke semantics. However, it is not something out of

the ordinary. In many cases, predicate versions of Kripke complete modal propositional systems are

incomplete for their relational interpretations. Whether QGL is topologically complete, we do not know,

but we conjecture that it is not.

We introduce an extension of QGL obtained by allowing non-well-derivations in the QGL calculus.

A non-well-founded derivation, or co-derivation, is a (possibly infinite) tree whose nodes are marked

by predicate modal formulas and that is constructed according to the rules (mp), (gen) and (nec). In

addition, any infinite branch in an oo-derivation must contain infinitely many applications of the rule
(nec). Below is an example of an co-derivation:

mp DVI‘Q PQ(Z‘Q) DVJEQ PQ(IQ) — Pl(xl)

gen 7131(%1)
nec Vl’l Pl(l'l)
mp Ovz, Pl(ml) OVx, P, (.’171) — Po(.’[?o)

Po(zo)
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A non-well-founded proof, or co-proof, is an oco-derivation, where all leaves are marked by axioms of
QGL. We write QGL, - A if there is an oo-proof with the root marked by A.

Our main result is that QGL, is complete with respect to the class of predicate topological frames for
QGL, with constant domains. We define a predicate topological frame for QGL,, as a tuple (X, 7, D),
where (X, 7) is a scattered topological space and D is a non-empty domain. Note that, in the case of
topological semantics, the constant domain condition does not imply validity of the Barcan formula in
contrast to the case of relational frames.

Let us recall some basic notions of semantics of predicate modal systems. A waluation in D is a
function sending each n-ary predicate letter to an n-ary relation on D, and a wvariable assignment is
a function from the set of variables Var = {zg,x1,22,...} to the domain D. For QGL,, a predicate
topological model M = (X, 1, D, £) is a predicate topological frame (X, 7, D) of QGL,, together with an
indexed family of valuations £ = (£, )wex in D. Elements of the set X are usually called worlds of the
model.

The truth of a formula A at a world w of a model M under a variable assignment h is defined as
Myw,hE L,

M,w,h E P(xy,...,x,) <= (h(z1),...,h(zy)) € &u(P),

M, w,hEA— B<<= M,w,h ¥ Aor M,w,hE B,

MwhEOA<= JFU et (weU and Vv’ € U\ {w} M,w',h E A),
M,w,hEVr A<= M,w,h’ £ A for any varible assignment h’ such that b’ = h,

where h' £ h means that h'(y) = h(y) for each y € Var \ {z}.
A formula A is true in M if A is true at all worlds of M under all variable assignments. In addition,
A is valid in a frame F if A is true in all models over F.

Theorem 1 (topological completeness). For any formula A, QGL,, F A if and only if A is valid in
every predicate topological frame of QGLy.

In order to obtain this result, we focus on a proof-theoretic presentation of QGL,, in a form of a
sequent calculus allowing non-well-founded proofs. This calculus is defined by the following initial
sequents and inference rules:

T, P(Z) = P(Z), A, T, 1= A,

IB=A ' A A - I'NA= B,A
t LA B=A RT=4-BA

[LA(y),Vz A= A I'= A(y), A
- [Vz A= A RT=vzA,A

(y ¢ FV(I'UA)),

ror=4
IO = 0A4,A
In addition, every infinite branch in a non-well-founded proof of this calculus must contain infinitely
many applications of the rule (O).

Our proof of Theorem 1 is inspired by two other sequent-based completeness proofs. We follow the
proof for classical predicate logic based on reduction trees and the proof for the system GL extended
with non-well-founded derivations from [5].

We also establish a strong version of Theorem 1. We write I' F A if for any predicate topological
model M = (X, 7, D,§), any world w of M and any variable assignment h: Var — D

VBeT M,w,h =B =— M,w,hE A

Combining the standard ultaproduct costruction and Shehtman’s ultrabouquet construction from [6],
we obtain the following proposition.

Proposition 2 (compactness). IfT' E A, then there is a finite subset Ty of T such that Ty E A.

Applying the previous results, we prove strong completeness for the following syntactic consequence
relation. We put I' F A if there is an co-derivation § with the root marked by A such that, for each leaf
a of § that is not marked by an axiom, a is marked by a formula from I', and there are no applications
of the rules (gen) and (nec) on the path from the root of 4 to the leaf a.
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Corollary 3 (strong completeness). For any set of formulas T' and any formula A,
'-A«<TEFA.

In conclusion, we note one interesting question: what is the complexity of QGL,.7 It may well turn
out that this system is not computably enumerable. In the area of predicate provability logic, there is
an example. According to Vardanian’s result, the set of predicate modal formulas provable in PA under
any interpretation is I19-complete [8, 9].
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