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The Gödel-Löb provability logic GL is a well-known propositional system whose language,
along with Boolean connectives, contains an additional modal connective ◻. According to its
arithmetical interpretation, the connective ◻ corresponds to the standard provability predicate
“... is provable in Peano arithmetic PA”. As shown by Solovay [7], a formula is a theorem of GL
if and only if each arithmetical translation of the formula is a theorem of PA. In other words,
GL captures the properties of formal provability of PA that are provable in PA itself.

The provability logic GL can also be described in terms of its relational semantics. This
system is complete with respect to the class of irreflexive transitive Kripke frames without
infinite ascending chains. However, GL is only weakly complete for its relational interpretation.

Strong completeness is achieved if one considers topological (or neighbourhood) semantics
of the given logic. The class of topological spaces corresponding to GL consists of all scattered
topological spaces (X,τ), where the modal connective ◻ is interpreted as the co-derived-set
operator cdτ(Y ) = {x ∈X ∣ ∃U ∈ τ (x ∈ U ∧U ∖ {x} ⊂ Y )}.

An interesting feature of GL is that this logic allows cyclic and non-well-founded reasoning.
In [3, 1], it was shown that GL can be defined by means of a sequent calculus allowing non–well-
founded proofs. In [4, 5], the standard axiomatic calculus for GL was extended with non–well-
founded derivations and various topological completeness results for the obtained system were
established.

In the present talk, we focus on a first-order predicate version of GL denoted by QGL. We
consider this system in a language without function symbols and constants (to simplify technical
details) and define it by the following axioms and inference rules.

Axioms:

• tautologies of classical propositional logic,

• ◻(A→ B)→ (◻A→ ◻B),

• ◻A→ ◻ ◻A,

• ◻(◻A→ A)→ ◻A,

• ∀xA(x)→ A(y),

• ∀x (A→ B)→ (A→ ∀xB), where x ∉ FV (A).

Inference rules:

A A→ Bmp
B

,
Anec
◻A

,
Agen
∀xA

.
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Thanks to Montagna [2], we know that QGL is not arithmetically complete. He also showed
that this system is not complete with respect to its Kripke semantics. However, it is not
something out of the ordinary. In many cases, predicate versions of Kripke complete modal
propositional systems are incomplete for their relational interpretations. Whether QGL is topo-
logically complete, we do not know, but we conjecture that it is not.

We introduce an extension of QGL obtained by allowing non-well-derivations in the QGL
calculus. A non-well-founded derivation, or ∞-derivation, is a (possibly infinite) tree whose
nodes are marked by predicate modal formulas and that is constructed according to the rules
(mp), (gen) and (nec). In addition, any infinite branch in an∞-derivation must contain infinitely
many applications of the rule (nec). Below is an example of an ∞-derivation:

⋮

◻∀x2 P2(x2) ◻∀x2 P2(x2)→ P1(x1)mp
P1(x1)gen
∀x1 P1(x1)

nec
◻∀x1 P1(x1) ◻∀x1 P1(x1)→ P0(x0)mp .

P0(x0)

A non-well-founded proof, or∞-proof, is an∞-derivation, where all leaves are marked by axioms
of QGL. We write QGL∞ ⊢ A if there is an ∞-proof with the root marked by A.

The relationship between QGL and QGL∞ can be explained as follows: QGL corresponds to
the fragment QGL∞, which is obtained if, instead of arbitrary non-well-founded derivations, we
restrict ourselves to the so-called cyclic derivations (more precisely, to their unfoldings).

Our main result is that QGL∞ is complete with respect to the class of predicate topological
frames for QGL∞ with constant domains. We define a predicate topological frame for QGL∞ as
a tuple (X,τ,D), where (X,τ) is a scattered topological space and D is a non-empty domain.
Note that, in the case of topological semantics, the constant domain condition does not imply
validity of the Barcan formula in contrast to the case of relational frames.

Let us recall some basic notions of semantics of predicate modal systems. A valuation in
D is a function sending each n-ary predicate letter to an n-ary relation on D, and a variable
assignment is a function from the set of variables Var = {x0, x1, x2, . . .} to the domain D. For
QGL∞, a predicate topological modelM = (X,τ,D, ξ) is a predicate topological frame (X,τ,D)
of QGL∞ together with an indexed family of valuations ξ = (ξw)w∈X in D. Elements of the set
X are usually called worlds of the model.

The truth of a formula A at a world w of a model M under a variable assignment h is
defined as

• M,w, h ⊭ �,

• M,w, h ⊧ P (x1, . . . , xn)⇐⇒ (h(x1), . . . , h(xn)) ∈ ξw(P ),

• M,w, h ⊧ A→ B ⇐⇒M,w, h ⊭ A orM,w, h ⊧ B,

• M,w, h ⊧ ◻A⇐⇒ ∃U ∈ τ (w ∈ U and ∀w′ ∈ U ∖ {w}M,w′, h ⊧ A),

• M,w, h ⊧ ∀xA⇐⇒M,w, h′ ⊧ A for any varible assignment h′ such that h′
x
= h,

where h′
x
= h means that h′(y) = h(y) for each y ∈ Var ∖ {x}.

A formula A is true inM if A is true at all worlds ofM under all variable assignments. In
addition, A is valid in a frame F if A is true in all models over F .
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Theorem 1 (topological completeness). For any formula A, QGL∞ ⊢ A if and only if A is
valid in every predicate topological frame of QGL∞.

In order to obtain this result, we focus on a proof-theoretic presentation of QGL∞ in a form
of a sequent calculus allowing non–well-founded proofs. This calculus is defined by the following
initial sequents and inference rules:

Γ, P (x⃗)⇒ P (x⃗),∆, Γ,�⇒∆,

Γ,B ⇒∆ Γ⇒ A,∆
→L ,

Γ,A→ B ⇒∆

Γ,A⇒ B,∆
→R ,

Γ⇒ A→ B,∆

Γ,A(y),∀xA⇒∆
∀L ,

Γ,∀xA⇒∆

Γ⇒ A(y),∆
∀R (y ∉ FV (Γ ∪∆)),

Γ⇒ ∀xA,∆

Γ,◻Γ⇒ A
◻ .

Π,◻Γ⇒ ◻A,∆

In addition, every infinite branch in a non-well-founded proof of this calculus must contain
infinitely many applications of the rule (◻).

Our proof of Theorem 1 is inspired by two other sequent-based completeness proofs. We
follow the proof for classical predicate logic based on reduction trees and the proof for the
system GL extended with non-well-founded derivations from [5].

We also establish a strong version of Theorem 1. We write Γ ⊧ A if for any predicate
topological modelM = (X,τ,D, ξ), any world w ofM and any variable assignment h∶Var →D

∀B ∈ ΓM,w, h ⊧ B Ô⇒M,w, h ⊧ A.

Combining the standard ultaproduct costruction and Shehtman’s ultrabouquet construction
from [6], we obtain the following proposition.

Proposition 2 (compactness). If Γ ⊧ A, then there is a finite subset Γ0 of Γ such that Γ0 ⊧ A.

Applying the previous results, we prove strong completeness for the following syntactic
consequence relation. We put Γ ⊢ A if there is an ∞-derivation δ with the root marked by A
such that, for each leaf a of δ that is not marked by an axiom, a is marked by a formula from
Γ, and there are no applications of the rules (gen) and (nec) on the path from the root of δ to
the leaf a.

Corollary 3 (strong completeness). For any set of formulas Γ and any formula A,

Γ ⊢ A⇐⇒ Γ ⊧ A.

In conclusion, we note one interesting question: what is the complexity of QGL∞? It may
well turn out that this system is not computably enumerable. In the area of predicate provability
logic, there is an example. According to Vardanian’s result, the set of predicate modal formulas
provable in PA under any interpretation is Π0

2-complete [8, 9].
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