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Abstract

We study products of unimodal logics characterized by classes of Kripke frames de-
fined by universal Horn formulas, classifying them with respect to the finite model
property (FMP). Further, we show that products of modal logics defined only with
variable-free axioms have the FMP. We also provide a partial result regarding prod-
ucts of logics with both Horn and variable-free axioms.
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1 Introduction

A Horn modal logic is a modal logic characterized by the class of all Kripke
frames satisfying several first-order universal Horn clauses. Unimodal Horn
logics naturally fall into 4 types (cf. [7]); we refer to them as transitive (e.g., K4,
S4), reflexive-symmetric (K,KB, T, KTB), strong (K5, S5), and uniform
(K+32p → 22p). Logics of the first two types are PSPACE-complete, and
those of the other two have the polynomial model property and are coNP-
complete [5] [7].

Some bimodal Horn logics are undecidable [7]. Apparently, there is no
known decidability criterion for these.

The finite model property (FMP) is known for certain products of Horn
logics, including (K+2p → 2mp)× S5 [3] and (K+2p → 2mp)×Km [8].
However, some other products (e.g., K4×K4) are undecidable [4].

In this paper we classify all products of unimodal Horn logics with respect
to the FMP. We deduce from [4] that a product of two transitive Horn logics
is undecidable and does not have the FMP. By employing the filtration via
bisimulation technique of [8], we establish that all other products of unimodal
Horn logics have the FMP.

We also extend this result to products of Horn logics with additional
variable-free axioms, provided the two Horn logics are not uniform. This
includes the following special case: if λ1 and λ2 are variable-free, then
(K+ λ1)× (K+ λ2) has the FMP and is decidable.

1 I would like to thank my supervisor Valentin Shehtman for his constant support. This
research was supported by the Academic Fund Program at HSE University (grant � 23-00-
022).
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2 Preliminaries

Basics. We consider the basic unimodal (ML) and bimodal (ML2) proposi-
tional languages; only normal logics are considered. We use the standard Kripke
semantics; unimodal (bimodal) Kripke frame are called frames (2-frames) for
short; the logic characterized by a class of (2-)frames C is denoted Log C. First-
order formulas with a single binary predicate R are interpreted over frames;
the logic characterized by the class of all frames modeling a first-order theory
Γ is denoted K(Γ).

Products. The product of frames (W1, R1) and (W2, R2) is the 2-frame
(W1 × W2, R

′
1, R

′
2), where: R′

1 := {((x, z), (y, z)) : (x, y) ∈ R1, z ∈ W2} and
R′

2 := {((z, x), (z, y)) : z ∈ W1, (x, y) ∈ R2}. The product of classes of frames
C1 and C2 is the class of 2-frames C1 × C2 := {F1 × F2 : Fi ∈ Ci}. The product
of logics L1 and L2 is the bimodal logic L1 × L2 := Log(FrL1 × FrL2), where
FrLi is the class of all frames for Li.

The commutator of L1 and L2, denoted [L1, L2], is the minimal bimodal
logic containing the axioms 3122p → 2231p and 2122p ↔ 2221p and ex-
tending [21/2]L1 ∪ [22/2]L2.

Filtration. For a subformula-closed set Σ ⊆ ML, a Σ-filtration of a Kripke
model (W,R,B) is a Kripke model of the form (W/∼, S,B∼) satisfying the
following conditions:
(1) if x ∼ y and φ ∈ Σ, then (M, x) |= φ ⇐⇒ (M, y) |= φ,
(2) S ⊇ R∼, where R∼ := {([x], [y]) : xRy},
(3) if [x]S[y], (M, x) |= 2φ, and 2φ ∈ Σ, then (M, y) |= φ, and
(4) B∼(p) := [B(p)].
A filtration satisfying S = R∼ is called a minimal filtration. A logic L admits
filtration with respect to a frame F if for any valuation B on F and any finite
subformula-closed set Σ ⊆ ML there exists a finite Σ-filtration of (F,B) based
on a frame for L. A logic L admits fitlration if it admits filtration with respect
to each frame for L. Similar definitions apply to bimodal logics and Kripke
models.

Trees. A frame (W,R) is a tree with a root w ∈ W if for any u ∈ W there
exists a unique R-path from w to u.

Pseudo-finitness. A frame (W,R) is s-pseudo-finite if there exists an
equivalence relation ∼ on W such that |W/∼| ≤ s and ∼◦R ◦∼ = R. A frame
is pseudo-finite if it is s-pseudo-finite for some s.

3 Horn Logics

Definition 3.1 A Horn clause is a first-order sentence of the following form:

∀−→x

(
m∧
s=1

xisRxjs → xi0Rxj0

)
.

A Horn theory is a set of Horn clauses. For a Horn theory Γ, the Horn Γ-closure
of a frame F = (W,R) is the frame FΓ := (W,RΓ), where RΓ is the minimal
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relation containing R and satisfying (W,RΓ) |= Γ. A Horn logic is a logic of
the form K(Γ), where Γ is a Horn theory.

Definition 3.2 A tree-clause corresponding to a finite tree (W, R̃) and nodes

u0, v0 ∈ W is the Horn clause ∀−→x
(∧

(u,v)∈R̃ xuRxv → xu0
Rxv0

)
. Its type is

the pair (n,m) ∈ (Z≥0)
2 such that wR̃nu0 and wR̃mv0, where w is the least

common ancestor of u0 and v0. A tree-theory is a set of tree-clauses.

Example 3.3 For any n,m ≥ 0, the logic K + 3n2p → 2mp is Horn, as its
only axiom is a Sahlqvist modal equivalent of ∀x, y, z (xRny ∧ xRmz → yRz).
The latter is a tree-clause of type (n,m).

As shown in [6], tree-clauses have Sahlqvist modal equivalents and are the
only (up to equivalence) Horn clauses having modal equivalents at all.

Proposition 3.4 Every Horn logic coincides with K(Γ) for some (possibly
infinite) tree-theory Γ.

Lemma 3.5 ([3], [1]) Let Γ1,Γ2 be Horn theories; set Li := K(Γi). If
φ ̸∈ [L1, L2], then there exist trees Ti with roots wi such that(
TΓ1
1 × TΓ2

2 , (w1, w2)
)
̸|= φ. In particular, [L1, L2] = L1 × L2.

Remark 3.6 It follows from Lemma 3.5 that the product K(Γ1) × K(Γ2)
coincides with Log {F1 × F2 : F1 |= Γ1,F2 |= Γ2}.
Remark 3.7 Proposition 3.4 and Lemma 3.5 also hold for polymodal Horn
logics, with “n-trees” substituted for trees; cf. [3] [6].

4 Classification of Unimodal Horn Logics

We divide unimodal Horn logics into 4 classes, similarly to the classification
used in [7].

Definition 4.1 A tree-theory Γ is —
• reflexive-symmetric if the type of each clause in Γ is (0, 0), (1, 0), or (0, 1);
• transitive if all clauses in Γ have types of the form (0,m), and at least one
of them is with m > 1;

• uniform if all clauses in Γ have types of the form (n, n + 1), and at least
one of them is with n > 0;

• strong in all other cases.

Lemma 4.2 If Γ is a strong tree-theory, then there exist integers d, s ≥ 0 such
that for any frame (W,R) |= Γ and any u ∈ W satisfying R−d(u) ̸= ∅ the
restriction of R to

{
x ∈ R<∞(u) : Rd(x) ̸= ∅

}
is s-pseudo-finite.

We will need the following properties of logics of specific types:

Lemma 4.3 Any reflexive-symmetric, transitive, or strong tree-theory is
equivalent to some finite subtheory.

Lemma 4.4 If Γ is a transitive tree-theory, then K(Γ) admits filtration.

Lemma 4.4 is proven by appropriately generalizing the proof of FMP for
K+2p → 2mp from [2].
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5 Products without the FMP

Our main result is as follows.

Theorem 5.1 Let Γ1 and Γ2 be tree-theories.
1) If both Γ1 and Γ2 are transitive, then K(Γ1)×K(Γ2) is undecidable and

does not have the fmp.
2) If Γ1 (or Γ2) is not transitive, then K(Γ1)×K(Γ2) has the fmp. 2

First, we derive the negative part of the claim from the following fact.

Lemma 5.2 ([4]) Let C1 and C2 be classes of transitive frames both containing
frames of infinite depth. Then Log(C1 × C2) is undecidable.

Proof of Theorem 5.1(1) For i ∈ {1, 2} choose an integer li > 0 such that
Ci :=

{
(W,Rli) : (W,R) |= Γi

}
contains only transitive frames. Observe that

Lemma 5.2 is applicable to C1, C2. The mapML2 → ML2 replacing each occur-
rence of 2i with 2

li
i is a reduction from Log(C1×C2) to K(Γ1)×K(Γ2), hence

the undecidability. By Lemma 4.3, K(Γ1) × K(Γ2) is finitely axiomatizable,
hence the lack of FMP. 2

6 Products with the FMP

We outline a proof of Theorem 5.1(2) similar to the reasoning in [8].

Definition 6.1 A relation E ⊆ W1 ×W2 is a temporal bisimulation between
the frames (W1, R1) and (W2, R2) if R2 ◦E = E ◦R1 and R1 ◦E−1 = E−1 ◦R2.
Two relations S1 and S2 on the same set strongly commute if S1 ◦S2 = S2 ◦S1

and S1 ◦ S−1
2 = S−1

2 ◦ S1. A frame (W,R) admits temporal bisimulation if for
any finite W/∼ there exists an equivalence relation of finite index ≈ strongly
commuting with R such that ≈ ⊆ ∼.

Lemma 6.2 Let Γ be a tree-theory and E a temporal bisimulation between F
and G; then E is also a temporal bisimulation between FΓ and GΓ.

Lemma 6.3 (“filtration via bisimulation”) Let Γ1, Γ2 be tree-theories
and (W,R1, R2) a 2-frame such that:

(1) (W,Ri) |= Γi and K(Γi) admits filtration with respect to (W,Ri), for
i ∈ {1, 2};

(2) R1 and R2 strongly commute; and
(3) (W,R1) admits temporal bisimulation.
Then [K(Γ1);K(Γ2)] admits filtration with respect to (W,R1, R2).

Proof outline Fix a valuation B on W and a finite subformula-closed set
Σ ⊆ ML2. It may be shown (using (1) only) that there exists an equiva-
lence relation ∼ such that (W/∼, (R∼

1 )
Γ1 , (R∼

2 )
Γ2 ,B∼) is a finite Σ-filtration

of (W,R1, R2,B).
Let ≈ be the union of all relations containing in ∼ and strongly commuting

with R1. Since (W,R1) admits temporal bisimulation, ≈ is an equivalence

2 Decidability does not necessarily follow, as some uniform Horn logics are not finitely ax-
iomatizable.
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relation of finite index. We have ≈ ◦ R1 = R1 ◦ ≈; thus R≈
1 and R≈

2 strongly
commute; hence (R≈

1 )
Γ1 and (R≈

2 )
Γ2 strongly commute by Lemma 6.2; therefore

(W/≈, (R≈
1 )

Γ1 , (R≈
2 )

Γ2) is a frame for [K(Γ1);K(Γ2)]. 2

Definition 6.4 A frame is a pseudo-tree of height 1 if it is pseudo-finite. A
frame (W,R) is a pseudo-tree of height h > 1 if W can be represented in the
form W0 ∪

⊔
j∈J Wj such that:

(1) |W0 ∩Wj | = 1 for each j ∈ J ;
(2) R = R|W0

∪
⊔

j∈J R|Wj
;

(3) (W0, R|W0
) is a pseudo-tree of height h− 1; and

(4) for some s, all (Wj , R|Wj ) are s-pseudo-finite.

Lemma 6.5 Every pseudo-tree admits temporal bisimulation.

Proof outline By induction on height, in the same way as for trees of finite
height in [8]. 2

Lemma 6.6 Let Γ be a strong tree-theory and T a tree. Then TΓ coincides
with the Horn Γ-closure of a pseudo-tree.

Proof Follows from Lemma 4.2. 2

Definition 6.7 The d-truncation of a pointed frame (W,R,w) is the frame
(Wd, R|Wd

, w), where Wd := R≤d(w). Pointed frames (W,R,w) and (V, S, v),
are d-indistinguishable if their d-truncations are isomorphic.

Lemma 6.8 Let Γ be a reflexive-symmetric or uniform tree-theory, d > 0.
Then every tree T with root w has a subtree T′ of finite height such that (TΓ, w)
and (T′Γ, w) are d-indistinguishable.

Proof of Theorem 5.1(2) Set L := K(Γ1)×K(Γ2). Consider φ ̸∈ L; let d be
its modal depth. Choose trees T1,T2 as in Lemma 3.5. Now for each i ∈ {1, 2},
depending on the type of Γi, apply one of Lemmas 4.4, 6.6, or 6.8. It follows
that there exist frames Fi d-indistinguishable from (or coinciding with) TΓi

i

such that Lemma 6.3 is applicable to F1 × F2. 2

7 Adding Variable-Free Axioms

Theorem 7.1 Let Γ1, Γ2 be reflexive-symmetric, transitive, or strong tree-
theories, and λ1, λ2 variable-free formulas.

1) If both Γ1 and Γ2 are transitive, and K(Γi)+λi ̸⊢ 2n⊥ for every i ∈ {1, 2}
and n > 0, then (K(Γ1)+λ1)× (K(Γ2)+λ2) is undecidable and lacks the fmp.

2) In all other cases, (K(Γ1) + λ1)× (K(Γ2) + λ2) is decidable and has the
fmp.

Note that Theorem 7.1 does not cover uniform tree-theories; that case re-
mains unclear. The proof is the same as for Theorem 5.1, except that we use
the following lemma instead of Lemma 6.8.

Lemma 7.2 Let Γ be a reflexive-symmetric tree-theory, λ a variable-free for-
mula, T = (W,R) a tree with root w such that TΓ |= λ, and d > 0 an integer.
Then there exists a pseudo-tree F with a node v such that
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(1) FΓ |= λ, and
(2) (TΓ, w) and (FΓ, v) are d-indistinguishable.

Proof outline By Lemma 4.3, we can assume that Γ is finite. One can derive
that, for some finite W/∼, the minimal filtration (W/∼, (RΓ)∼) is a frame for
both Γ and λ.

Set x ≈ y if (1) x ∼ y and (2) either x = y or the least common ancestor
of x and y is not in R≤d(w). Note that (W/≈, R≈) is a pseudo-tree and that
(R≈)Γ = (RΓ)≈. One can show that (W,RΓ, w) and (W/≈, (RΓ)≈, [w]) are
d-indistinguishable. 2
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