The course is devoted to the theory of quantum integrable systems with many (and even infinitely many) degrees of freedom, which is a key part of modern mathematical physics. Integrable models are of great interest and importance from both physical and mathematical points of view. As a rule, there are reach algebraic structures behind them. A deep understanding of these structures has leaded to some new branches of modern mathematics such as, for example, quantum groups and algebras. We will discuss the main method of solving the related problems - the celebrated Bethe ansatz in its coordinate and algebraic versions. The secret of universality and effectiveness of Bethe ansatz hasn't been fully revealed yet. In his time, Nobel winner Richard Feynman pointed out that revealing these secrets is one of the main problems in future theoretical and mathematical physics.
Learning Objectives
Ознакомить слушателей с техниками Координатного и алгебраического анзецев Бете и с помощью них получить современные результаты из теории интегрируемых систем.
Expected Learning Outcomes
Derived Bethe equation from ABA for models with elliptic and trigonometric R matrices
Can write commutation relation for Sklyanin algebra
Obtain formulas for scalar product of Bethe vectors
Explain connection between generalized spin chain and Ruijsenaars-Schneider system
Course Contents
Coordinate Bethe ansatz
Vertex models of statistical mechanics on two-dimensional lattice
Algebraic Bethe ansatz
Scalar products of Bethe vectors
Quantum-classical duality
Assessment Elements
Контрольные работы
Контрольные работы с задачами по пройденным материалам
Проверка домашних задач
Проверка задач, которые не успели разобрать на семинарах
Interim Assessment
2025/2026 2nd module
0.3 * Контрольные работы + 0.4 * Проверка домашних задач + 0.3 * Проверка домашних задач
Bibliography
Recommended Core Bibliography
Baxter, R. J. (1982). Exactly Solved Models in Statistical Mechanics. [Place of publication not identified]: Academic Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1258304
Recommended Additional Bibliography
Korepin, V. E., Izergin, A. G., & Bogoliubov, N. M. (1993). Quantum Inverse Scattering Method and Correlation Functions.
Instructors
Zabrodin, Anton
Прокофьев Вадим Вячеславович
Course Syllabus
Abstract
Learning Objectives
Expected Learning Outcomes
Course Contents
Assessment Elements
Interim Assessment
Bibliography
Recommended Core Bibliography
Recommended Additional Bibliography
Authors