Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Адрес: 119048, Москва,
ул. Усачёва, 6
тел. (495) 916-89-05
тел. (495) 772-95-90 *12725
E-mail: math@hse.ru
Учебный офис:
mathstudyoffice@hse.ru
тел. (495) 624-26-16
тел. (495) 772-95-90 *12713
ДПО факультета математики:
dpo-math@hse.ru
Проект «Математическая вертикаль»:
math.vertical@hse.ru
ЛМШ факультета математики - Летняя школа для школьников:
math.vertical.school@hse.ru
Редакторы сайта факультета:
Я расскажу о некоторых давних открытых проблемах про узлы и зацепления и о том, как их можно решать (подходы, методы, частичные результаты и т.д.).
Например, вопрос, вынесенный в название доклада, был поставлен Д.Ролфсеном в 1972 году (вот необходимые определения: "узел" --- непрерывное инъективное отображение из окружности в R^3, "изотопия" --- гомотопия в классе узлов). Столь напрашивающийся вопрос вероятно витал в воздухе и задолго до Ролфсена, но более ранних упоминаний в литературе я не встречал.
Для того, чтобы уметь что-то доказывать про узлы и зацепления, полезно (1) иметь их инварианты и (2) понимать, что именно эти инварианты детектируют.
Причём если Вас интересуют конкретные вопросы (как, например, проблема Ролфсена), а не просто поучаствовать в общем развитии теории, первичен шаг (2), а не производство новых инвариантов: для каких-то целей хватит уже известных инвариантов или их модификаций, а для других всё равно нужны инварианты с искомыми свойствами (а не те, что примечательны своей загадочностью).
Соответственно, значительная часть доклада будет посвящена геометрии инвариантов зацеплений (таких как полином Александера и его вариации, мю-инварианты Милнора, разные виды инвариантов конечного порядка). Предварительных знаний не требуется, все необходимые определения будут даны.