• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 119048, Москва,
ул. Усачёва, 6

тел. (495) 916-89-05
тел. (495) 772-95-90 *12725
E-mail: math@hse.ru

Учебный офис:
mathstudyoffice@hse.ru
тел. (495) 624-26-16
тел. (495) 772-95-90 *12713

ДПО факультета математики:
dpo-math@hse.ru

Проект «Математическая вертикаль»:
math.vertical@hse.ru

ЛМШ факультета математики - Летняя школа для школьников:
math.vertical.school@hse.ru 

Руководство
Научный руководитель Ландо Сергей Константинович
Заместитель декана по административной работе Балаева Светлана Васильевна
Заместитель декана по научной работе Горбунов Василий Геннадьевич
Заместитель декана по учебной работе Колесников Александр Викторович
Заместитель декана по работе с абитуриентами Пятов Павел Николаевич

BIMSA-HSE Joint Seminar on Data Analytics and Topology. Speaker: Fengling Li (Dalian University of Technology)

Мероприятие завершено
Knot data analysis using multiscale Gauss link integral

Abstract:
In the past decade, topological data analysis has emerged as a powerful algebraic topology approach in data science. Although knot theory and related subjects are a focus of study in mathematics, their success in practical applications is quite limited due to the lack of localization and quantization. We address these challenges by introducing knot data analysis (KDA), a paradigm that incorporates curve segmentation and multiscale analysis into the Gauss link integral. The resulting multiscale Gauss link integral (mGLI) recovers the global topological properties of knots and links at an appropriate scale and offers a multiscale geometric topology approach to capture the local structures and connectivities in data. By integration with machine learning or deep learning, the proposed mGLI significantly outperforms other state-of-the-art methods across various benchmark problems in 13 intricately complex biological datasets, including protein flexibility analysis, protein–ligand interactions, human Ether-à-go-go-Related Gene potassium channel blockade screening, and quantitative toxicity assessment. Our KDA opens a research area—knot deep learning—in data science. This is a joint work with Li Shen, Hongsong Feng, Fengchun Lei, Jie Wu and Guo-Wei Wei.

The seminar website: https://bimsa.net/activity/BIMJoiSemonDatAnaandTop/

 

 

Добавить в календарь