• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Адрес: 119048, Москва,
ул. Усачёва, 6

тел. (495) 916-89-05
тел. (495) 772-95-90 *12720
тел. (495) 772-95-90 *12726 (декан)
E-mail: math@hse.ru

Учебный офис:
тел. (495) 624-26-16
тел. (495) 772-95-90 *12712


Декан Тиморин Владлен Анатольевич

Заместитель декана по учебной работе Артамкин Игорь Вадимович

Заместитель декана Кузнецова Вера Витальевна

Заместитель декана по науке Фейгин Евгений Борисович

Семинар по геометрической топологии. Докладчик : Андрей Рябичев

Мероприятие завершено

Eliashberg's h-principle for maps with Thom-Boardman singularities
Speaker: Andrey Ryabichev

Suppose we are given smooth manifolds M,N and a continuous map f:M\to N. We may ask, when is f homotopic to a smooth map with a prescribed singular locus? The case of fold singularities was settled by Y.Eliashberg in the 1970s. Namely, there is a necessary and sufficient condition for f to be homotopic to a smooth map with prescribed folds C\subset M and with no other critical points. We will discuss how one can generalize this condition for an arbitrary locus of Thom-Boardman singularities.

The most well-known case is the manifold of isospectral tridiagonal matrices. This manifold is closely related to the toric variety of type A known in representation theory. This relation can be extended to the relation between manifolds of isospectral staircase matrices and semisimple regular Hessenberg varieties: they have homeomorphic orbit spaces and isomorphic equivariant cohomology rings. 

We study two more examples: the manifold of arrow matrices, and the space of periodic tridiagonal matrices. The study of topology in these two examples had lead us to surprisingly interesting objects from combinatorial geometry: the maximal cubical subcomplex of a permutohedron and the regular tiling of Euclidean space by permutohedra. 

The talk is partly based on joint works with Victor Buchstaber.