Адрес: 119048, Москва,
ул. Усачёва, 6
тел. (495) 916-89-05
тел. (495) 772-95-90 *12725
E-mail: math@hse.ru
Учебный офис:
mathstudyoffice@hse.ru
тел. (495) 624-26-16
тел. (495) 772-95-90 *12713
Telegram каналы:
Канал Студсовета Матфака - @mathhse_council
Канал Деканата - @mathhse_news
Канал Учебного офиса ФМ - @mathhse_study
Канал Матфак внеучебка - @mathhse
ДПО факультета математики:
dpo-math@hse.ru
Проект «Математическая вертикаль»:
math.vertical@hse.ru
ЛМШ факультета математики - Летняя школа для школьников:
math.vertical.school@hse.ru 
Редакторы сайта факультета:
 
		
	In 1986 E.B.Vinberg introduced the notion of complexity for the action of a reductive group G on an algebraic variety over an algebraically closed field, which is the transcendence degree of the field of invariants of a Borel subroup B. This number is also equal to the codimension of generic B-orbit in algebraic variety.  
 Vinberg has proved that complexity does not increase after passing to the B-invariant subset of algebraic variety.  
 In particular, this shows that in a spherical variety, i.e. the variety with an open B-orbit, there is only finite number of B-orbits, which was also proved independently by M.Brion. 
 
 In my talk I shall speak about generalization of this result to algebraic non-closed fields which is a joint work with F.Knop. One should recall that for algebraically non-closed field k it may happen that there are no Borel subgroups defined over k, so for defining k-complexity we consider the codimension of a generic orbit of the minimal parabolic subgroup defined over k. In the talk I shall focus on the behavior of k-complexity, in particular I shall speak about finiteness result for k-spherical varieties. 
 Also I shall talk about the action of the k-Weyl group on the set of P-orbits of maximal rank and homogeneity on a spherical variety which is a generalization of the action of the Weyl group on of the set of B-orbits introduced by F.Knop. 
  
Абстракты докладов и ссылка на семинар: users.mccme.ru/nikon/zoomerfest/more.html
Записаться на рассылку можно на страничке bogomolov-lab.ru или написав мне.
Успехов,
Никон Курносов