• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 119048, Москва,
ул. Усачёва, 6

тел. (495) 916-89-05
тел. (495) 772-95-90 *12725
E-mail: math@hse.ru

Учебный офис:
mathstudyoffice@hse.ru
тел. (495) 624-26-16
тел. (495) 772-95-90 *12713

ДПО факультета математики:
dpo-math@hse.ru

Проект «Математическая вертикаль»:
math.vertical@hse.ru

ЛМШ факультета математики - Летняя школа для школьников:
math.vertical.school@hse.ru 

Руководство
Научный руководитель Ландо Сергей Константинович
Заместитель декана по административной работе Балаева Светлана Васильевна
Заместитель декана по научной работе Горбунов Василий Геннадьевич
Заместитель декана по учебной работе Колесников Александр Викторович
Заместитель декана по работе с абитуриентами Пятов Павел Николаевич

K-Theory of C*-Algebras

2024/2025
Учебный год
ENG
Обучение ведется на английском языке
3
Кредиты
Статус:
Дисциплина общефакультетского пула
Когда читается:
3, 4 модуль

Преподаватель

Course Syllabus

Abstract

$K$-theory of $C^*$-algebras appeared in the 1970iesas a noncommutative counterpart of Atiyah-Hirzebruch topological $K$-theory.In some sense, this theory may be viewed as ``algebraic topology for $C^*$-algebras''.$K$-theory naturally associates two abelian groups, $K_0(A)$ and $K_1(A)$, to every$C^*$-algebra $A$. These groups are quite important invariants of $A$.On the one hand, theycontain much information about $A$, and on the other hand, there are powerful toolsto explicitly calculate them.If $A=C(X)$, the algebra of continuous functions on a compactHausdorff topological space $X$, then $K_0(A)$ and $K_1(A)$ are just the topological $K$-groups$K^0(X)$ and $K^1(X)$, respectively. Thus topological $K$-theory is fully embeddedinto $K$-theory of $C^*$-algebras. A number of fundamental results in topological $K$-theory,including the Bott periodicity, have natural extensions to $C^*$-algebras.At the same time, $K$-theory of $C^*$-algebras has some interesting``purely noncommutative'' properties, which do not have classical prototypes.In this course we define $K$-theory for $C^*$-algebras,prove its basic properties (including the Bott periodicity theorem), and calculatethe $K$-groups in some important cases.
Learning Objectives

Learning Objectives

  • -
Expected Learning Outcomes

Expected Learning Outcomes

  • ---
Course Contents

Course Contents

  • Basic facts on 𝐶∗-algebras (a survey).
  • Equivalence relations for projections. The group 𝐾0(𝐴). Remarks on the commutative case (vector bundles, the Serre – Swan theorem, topological 𝐾-theory).
  • Homotopy invariance, half-exactness, and stability of 𝐾0.
  • Equivalence of unitaries. The group 𝐾1(𝐴).
  • The index map in 𝐾-theory. A relation to the Fredholm index. The exact sequence of 𝐾-groups induced by a 𝐶∗-algebra extension.
  • The Toeplitz algebra. The Bott periodicity.
  • Inductive limits of 𝐶∗-algebras. The continuity of 𝐾0. The order structure on 𝐾0(𝐴). AF-algebras and their Bratteli diagrams. Elliott’s classification of AF-algebras in terms of 𝐾-theory.
Assessment Elements

Assessment Elements

  • non-blocking Midterm
  • non-blocking Exam
Interim Assessment

Interim Assessment

  • 2024/2025 4th module
    Final grade = 0.3 × (midterm grade) + 0.7 × (exam grade). Both the midterm and the final exam will have the form of written take-home individual assignments. You will have appr. a week for preparing your solutions.
Bibliography

Bibliography

Recommended Core Bibliography

  • Algebraic K-theory. Vol.1: Higher K-theories, , 1973
  • Algebraic K-theory. Vol.2: "Classical" algebraic K-theory, and connections with arithmetic, , 1973
  • Algebraic K-theory. Vol.3: Hermitian K-theory and geometric applications, , 1973

Recommended Additional Bibliography

  • K-theory : lectures, Atiyah, M. F., 1989

Authors

  • Иконописцева Юлия Вахтаногвна
  • PIRKOVSKIY ALEKSEY YULEVICH